
Shape Trajectory Analysis Using Procrustes Analysis and VARMA Models

K. James Soda1, Dennis Slice1

1Department of Scientific Computing

Florida State University

Introduction

-The Procrustes paradigm of morphometrics provides a four step work flow for shape
analysis: 1) Collect landmark data, 2) Align shapes via Generalized Procrustes Analysis,
3) Analyze resulting data via multivariate statistics, 4) Visualize data (Adams et al. 2013)

-A shape trajectory is a time-ordered set of shapes that an organism assumes during
some behavior or process. Since after alignment, shape trajectories are functions, rather
than points, in shape space, the third step of the paradigm cannot be implemented with-
out bias.

-Shape trajectory data is similar to outline data, in that the unit of interest is a con-
tinuous function. To analyze outlines, morphometricians often approximate the outline
using a combination of one or more basis functions and use the parameters of these
functions as proxies for the outlines themselves. These parameters define a single point in
parameter space, thus allowing for statistical analysis of the original outlines (Rohlf 1990).

-Vector Autoregressive-Moving Average (VARMA) models are a family of statistical mod-
els used to represent a vector-valued time series. Each model has the following generalized
structure:
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Put briefly, the left-hand side of a VARMA model expresses the value of the time se-
ries at time t ((Yt−µ)) as partially a weighted average of the previous p time steps. The
remaining value of the series at time t is expressed on the right-hand side as a weighted av-
erage of a normally-distributed random vector (εt) and the random vectors that occurred
over the last q time steps (Reinsel 1997).

-Here we fit VARMA models to simulated shape trajectories and then use the elements
of the resulting coefficient matrices as a representation of the trajectories themselves. Us-
ing these representations, we attempt to differentiate between two qualitatively different
shape trajectories.

Methods

Simulation Design

-Both simulations were written in Python ver. 2.7 and consisted of ten landmarks (see
Fig. 1) (van Rossum and Drake 2001). The first time step in both trajectories began
with the configuration seen in the first panel of Fig. 1A, and in both cases the simulated
organism moved such that the most anterior and most posterior landmarks only moved
along a single line. However, their lateral landmarks moved to either simulate peristaltic
movement (Fig. 1A) or undulatory movement (Fig. 1B).

Figure 1. A) Example of three time steps from the peristaltic simulation, illustrating how
the shape of the simulated organism changes as it moves. Notice that the lateral landmarks
can only move along the x-axis until the most anterior landmark stops moving along the
y-axis. B) Example of five time steps from the undulatory simulation, illustrating how the
shape of the simulated organism changes as it moves. Notice that the lateral and most
anterior landmarks can both move along the y-axis at the same time but that only the
lateral landmarks can move along the x-axis.

Methods (cont.)

Processing and Model Estimation

-The shape trajectories were concatenated and aligned via Procrustes Analysis in Mor-
pheus et al. ver 1.7 (Slice 2013)

-When describing shape trajectories, the size of the coefficient matrices in a VARMA
model are dependent on the number of variables used to describe each shape in the tra-
jectory. To reduce the number of variables that described each shape, and thus reduce the
number of coefficients that require estimation, we applied principal component analysis to
the data using R ver. 3.0 (R Team 2013). Then, with the help of routines in the R package
MTS, we established the maximum values of p and q, the so-called orders of the models,
that each trajectory could require when different numbers of principal components were
used to describe each shape (Tsay 2014).

-With the first two principal components describing each shape, we built multiple VARMA
models using the VARMAX procedure in SAS software ver. 9.3 (SAS Institute Inc. 2002-
2004). We tried various model structures and compared the fit of each model using
corrected Akaike Information Criterion. Based on a haphazard search of model space, we
chose a VARMA(2,2) model to represent each trajectory.

-Based on estimates provided in SAS software, we compared each element in the model
for the peristaltic simulation to its corresponding element in the model for the undulatory
simulation using a Welch t-test in R.

Results
Table 1. Results from Welch t-tests comparing corresponding elements of the coefficient
matrices for the peristaltic and undulatory simulations. The first table corresponds to
matrices weighting vectors from the previous time step, and the second table corresponds
to matrices weighting vectors from two time steps before time t. VAR corresponds to
matrices weighting previous shapes, and VMA corresponds to matrices weighting previous
random vectors. Asterisks indicate significant results after a Bonferroni correction for each
component of the model (tcritical = 2.958783) (Sokal and Rohlf 1995).

Table 2. The highest possible orders for VARMA models that describe the undulatory
(to the left) and peristaltic (to the right) simulations when varying numbers of principal
components describe each shape in the trajectory.

Conclusions

-There appears to be an inverse relationship between the number of principal components
used to describe shapes in a trajectory and the number of coefficient matrices that could
be required to adequately describe that trajectory. This in practice could lead to a trade-
off between the size of coefficient matrices and the number of coefficient matrices.

-The coefficients in VARMA models allow for statistical differentiation between the undu-
latory and peristaltic simulations. At the moment, such comparisons are limited by the
software available for building VARMA models. The development of our own routines
could vastly improve the sophistication and power of statistical comparisons.References
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