
Investigating the Effects of Inhomogenous
Porosity on Resin Infusion
Lukas Bystricky, Janet Peterson, Sachin Shanbhag
Florida State University Department of Scientific Computing
lb13f@my.fsu.edu

Abstract
During a resin infusing process a polystyrene foam is located between an immovable flat lower surface and an

initially flat vacuum bag on top. After infusion the top surface becomes distorted. It is expected that variations in
the porosity cause the foam to expand or contract unevenly during the infusion process. As resin is injected into
the foam it will flow according to the Darcy-Brinkmann equation for porous media. The resulting pressure field
can expand or contract the pores, thus changing the overall shape of the foam. We wish to validate this theory by
using the Deal.ii finite element library to approximate the solution of a system of partial differential equations over
a sequence of computational domains.

Introduction
Foam infused with resin is viewed as a potential way to control placement of additives inside a larger
structure. For example if one wanted to mechanically reinforce one particular area of an airplane
fuselage for instance, one could place a foam containing carbon nanotubes at that point before resin
infusion. In many applications, such as the one mentioned, it is important that the surface of the
hardened resin remains smooth. It has been experimentally shown that in the area above the foam this
is not the case. We wish to explain why this might be and create a computational model to validate
our hypothesis.

Model

Hypothesis
It is believed that nonuniform porosity could be a cause of surface roughness. As the fluid flows
through the foam it creates a pressure profile which expands and contracts the pores. Since the bottom
surface is on an immovable flat surface, this expansion or contraction manifests itself as a roughening
of the top surface.

Fluid Motion
The velocity and pressure fields for steady flow through porous media are found by solving the Darcy-
Brinkman equations:

µ

κ(x)
u− µ∆u +∇p = 0

∇ · u = 0
(1)

where
• u = 〈u, v〉 is the velocity of the fluid (in 2 dimensions)
• p is the pressure
• µ is the dynamic viscosity of the fluid
• κ(x) is the permeability of the media, which we take to be a scalar that varies in space

Porosity
Next, let φ(x) be the porosity of the foam, which varies in space. Then let us assume that the perme-
ability κ(x) is related to the porosity by:

κ(x) = αφ(x)β (2)

where α and β are constants, which we will prescribe later.
We also need to define an initial porosity field, φ0(x). Given N random generator points xi

(0 ≤ i ≤ N ) in our domain, generate a circular pore at each xi and then give them a random in-
ner radius rin

i and a random outer radius rout
i . For each pore, inside its inner radius, the porosity is 1

(full void), and outside its outer radius the porosity is 0. Between its inner and outer radii the porosity
decreases linearly from 1 to 0. Mathematically this can be described as:

φ0(x) = min
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0 otherwise

Domain Height
After infusion, the pressure of the resin expands the pores according to the following equation:

φ(x) = φ(x)0 exp

(
p(x)− p0

G

)
(3)

where p(x) is the local pressure, p0 is the initial pressure, 1 atm, before the resin infusion and G is
the foam modulus.

Using this new porosity, we can update the height using the integral:

Hk+1(x)

H0
=

∫ Hk(x)

0

φ(x)

φ0(x)
dy (4)

where H0 is the initial height, and Hk(x) is the foam height for the kth iteration. Note that φ0(x) is
the initial porosity mapped to the domain given by Hk(x). We solve (1) on each new domain and
keep updating the domain until the difference between Hk+1 and Hk reaches a prescribed tolerance.

Results

Using the parameters listed below we can generate the following initial porosity field:

initial foam height 1 mm
foam length 5 mm
α 2× 10−4

β 2
N 50
rin [0.001 mm, 0.03 mm]
rout [0.05 mm, 0.12 mm]

This field has an average porosity of 0.7729 and an average permeability from (2) of 1.432 × 10−4

mm2. It can be compared to an SEM image of a foam that was held under a low temperature mold:

Solving (1) using finite elements with this porosity field and the following material properties and
boundary conditions gives pressure and velocity profiles:

viscosity 0.1 Pa s
modulus 1× 105 Pa
inlet normal stress 1× 105 Pa
outlet normal stress 9.9× 104 Pa

Due to the finite element formulation, in order to have physical boundary conditions at the inlet and
outlet we have to prescribe the normal stresses there. As we will see this is almost equivalent to set-
ting the pressure, particularly if the change in normal stress is not too large. In addition we prescribe
no-slip boundary conditions on the top and bottom of the foam and no vertical velocity at the inlet
and outlet.

Next we use (3) to update the porosity field, and (4) to update the domain height.

The change in domain shape is small, 3.964 × 10−4 mm on average, but it is there. Resolving (1)
on this new domain and updating the domain a second time gives no appreciable change in domain
shape, so we can conclude the scheme converges after 1 iteration.

If we wish to see a larger change in domain shape, we can decrease the foam modulus G. With
G = 1× 104 Pa, we get the following final domain shape and porosity field, again after 1 iteration:

Conclusions

Using the model described above, we see that the inhomogenous porosity does have an effect on the
shape of the foam. With the original estimate of the foam stiffness however, this fails to account for
the size of the ridges, which in experiments can be up to 20% of the domain height.

Future Research

This simple model fails to account for the viscous stresses of the resin on the foam. Future work will
look at these effects, and relate this stress to strain on the foam in order to compute the deformation.


