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Introduction
In the fields of science and engineering mathematical models are utilized to understand and predict
the behavior of complex systems. Common input data/parameters for these type of models include
forcing terms, boundary conditions, model coefficients and the computational domain itself. Often
times for any number of reasons there is a degree of uncertainty involved with these different types of
inputs. In order to obtain an accurate model we must incorporate this uncertainty into the governing
equations, and quantify its effects on the output of the simulation. In this work we explore the recently
analyzed discrete least squares method and the application of a reduced basis method to cut down on
the computational cost.

Problem Setting
We focus on solving the stochastic elliptic problem and the corresponding discrete problem: find
u : Ω×D → R such that it holds almost surely:

−∇(a(x,y)∇u(x,y)) = f ∀(x,y) ∈ D × Γ

u(x,y) = 0 ∀(x,y) ∈ D × Γ.
(1)

with the following assumption on the diffusion coefficent
• The coefficient a(x,y) can be written in the form

a(x,y) = a0(x) +

N∑
k=1

ak(x)yk(ω). (2)

•Defining L2
ϕ to be the space of square integrable functions on Γ with respect to the measure ϕ,

V = H1
0(D) and V ′ be the corresponding dual space we can express the corresponding weak

formulation.
• Find u(x,y) ∈ V ⊗ L2

ϕ(Γ) such that:∫
Γ

∫
D
a(x,y)∇u(x,y) · ∇v(x,y)ϕ(y)dxdy =

∫
Γ

∫
D
f (x)v(x,y)ϕ(y)dxdy ∀ v ∈ V ⊗ L2

ϕ(Γ).

(3)
•We are interested in some statistical Quantity of Interest (QOI) related to the solution of (3), some

examples would be the spatial mean or variance of the solution.

Least Squares in Hilbert Spaces
•We wish to find the best approximation of u ∈ V ⊗ L2

ϕ(Γ) in the discrete least squares sense.

•We let
{
`j
}#Λ
j=1 denote a polynomial space,

{
ψj
}Nh

j=1 denote a finite element basis and we define

Dij = `j(yi). (4)

•We then seek the discrete least squares approximation

uΛ = Pnmu =
∑
s∈Λ

Nh∑
j=1

csj`s(y)ψj(x). (5)

where C =
{
csj
}

satisfies
(DTD)C = DTU (6)

u(yi) =
∑Nh
j=1 uj(y

(i))ψj, and Uij = uj(y(i)).
• This will then decouple into Nh least squares problems

DTDC:,j = DTU:,j. (7)

Reduced Basis Method
• Letting X = V ⊗ L2

ϕ(Γ) we can rewrite (1) in the weak form

A(u(y), v; y) = f (v) ∀v ∈ X (8)

and the associated Galerkin projection problem as:

A(uN (y), v; y) = f (v) ∀v ∈ XN (9)

where XN is a linear subspace of dimension N >> 1 (i.e. FEM space).
•A reduced basis approach seeks to cut down on the cost of each individual realization of (9) by

constructing a linear subspace of XN
XN ,N = Span(uN (yNn )) n = 1, ...., N (10)

where N << N , that serves as a good approximation to our finite element space.
•Using a greedy algorithm with an online/offline decomposition it is possible to obtain massive cost

savings while still maintaining the accuracy of our calculations.
• Two key components of this algorithm are the training set Ξtrain ⊂ Γ we select snapshots from, and

the a posterior error estimator 4uN (y) which we use to validate that our reduced basis is indeed a
good approximant.
•A rough outline of the greedy algorithm reads :

1: Begin offline portion
2: randomly select y1 ∈ Ξtrain
3: compute uN (y1) and initialize the reduced basis XN ,1 = Span(uN (y1))
4: for n = 2 till Nmax
5: yn = argmax{4un−1(y), y ∈ Ξtrain}
6: compute uN (yn) and let XN ,m = Span(uN (ym)),m = 1, ..., n
7: end for
•Alternatively to terminating the algorithm when we reach some level Nmax we can preset some er-

ror tolerance εrom and end the algorithm when the approximation error is judged to be sufficiently
small

Incorporation in the least squares algorithm

•We can split the error into the sums of a spatial discretization error, least squares approximation
error, and reduced basis error, i.e.

E(||u− Pnmurh||
2) ≤ ||u− uh||2X︸ ︷︷ ︸

I

+ ||uh − urh||
2
X︸ ︷︷ ︸

II

+E(||urh − P
n
mu

r
h||

2
X)︸ ︷︷ ︸

III

. (11)

•Our strategy will be to drive the reduced basis error to a level ε using the a posteriori error estimate
4uN . We will then determine the number of sample points n and the finite element discretization
level h so that they are of the same level as the reduced basis error.

A rough outline of our algorithm reads :
1: Set the desired error tolerance for the reduced basis method εrom
2: Using εrom determine the appropriate FEM discretization h
3: Execute the offline portion of the reduced basis algorithm
4: Using h and error estimates for II in (11) determine the appropriate number of sample points n for
the least squares problem and the associated polynomial space
5: Solve the least squares system (7) and calculate the associated QOI

•Analyzing the computational cost we have that the full least squares method will scale as

LSfull = n×O
(

1

hα

)
+ O(m3) + O(m2)× 1

h
. (12)

•Here n is the total number of sample points, h is the mesh spacing parameter, O
(

1
hα

)
is the cost

for solving the finite element system where α depends on both the solver and spatial dimension,
O(m3) is the cost associated with the LU or QR decomposition, and O(m2) × 1

h is the cost for
solving the system (7).

• analyzing the algorithm with the reduced basis incorporated into it. The offline portion of the
algorithm will scale as

RBoffline = O(ntrain)× (

Nred−1∑
`=1

wonline(`)) + Nred ×O
(

1

hα

)
. (13)

•WhereO(ntrain) is the cost of a max search in our training set, and wonline is the cost for calculating
4un(y) and uN ,n(y) for a value y ∈ Ξtrain.

• The total cost for our algorithm will thus scale as

RBtotal = RBoffline + n×O(N3
red) + O(m3) + O(m2)×Nred. (14)

Numerical Results

We consider the elliptic problem in one spatial dimension

−(a(x, y)u(x, y)′)′ = 1, x ∈ (0, 1), y ∈ Γ = [−1, 1]

u(0, y) = u(1, y) = 0,
(15)

and set the diffusion coefficient to be

a(x, y) = 4 + y1 + 0.2 sin(πx)y2 + 0.04 sin(2πx)y3 + 0.008 sin(3πx)y4. (16)

In order to measure the error in our examples we will consider the quantity of interest

ψ(u) =
1

|D|

∫
D
udx. (17)

•We will use a sufficiently fine discretization (h = 10000) so that the FEM error does not contribute
to the total error in a meaningful fashion.

•As we can see in the above graphs we manage to maintain the accuracy of our scheme while gaining
significant cost savings.


