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Abstract
A phase field model for simulating the adhesion between two
vesicles is constructed. Two phase field functions are intro-
duced to simulate each of the two vesicles. An energy model is
defined which accounts for the elastic bending energy of each
vesicle, the contact potential energy between the two vesicles,
and the vesicle volume and surface area constraints through a
penalty method.

Elastic Bending Energy

The sharp interface model of the elastic bending energy in-
volves the integral of the squared mean curvature along a
membrane surface, i.e.,

Eb = k
∫

Γ
(H − c0)2ds. (1)

The phase field formula for the elastic bending energy of the
vesicle (1) is given by
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with surface area
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and volume difference

V(φ1) =
∫

Ω
φ1 dx. (4)

Adhesive Potential Energy

Due to various forces between the membranes, adhesion will
take place when they come close enough. Therefore, one of our
crucial task when modeling the adhesion is to represent the ad-
hesive potential energy between them. We propose a formula
denoting this energy

S(φ1, φ2) =
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(φ2
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which approaches the sharp interface limit

Ep =
∫

Γ
Wds (6)

as ε → 0. This requires a decomposition from an intergral in
3D space to a composite of an integral on the membrane surface
and an integral along the integral curve (see [1, Lemma 2.1]).

Total Energy and Gradient Flow

The total energy for our phase field model to simulate vesicle-
vesicle adhesion is given by

E(φ1, φ2) = W(φ1) + W(φ2)− σS(φ1, φ2), (7)

whereas the constraints are given by

V(φ1) = α1, A(φ1) = β1, V(φ2) = α2, A(φ2) = β2, (8)

with α1, α2 and β1, β2 denoting the prescribed values for the vol-
ume difference and surface area, respectively. We use a penalty
formulation to impose the constraints into the total energy

EM(φ1, φ2) = W(φ1) + W(φ2)− σS(φ1, φ2)

+
1
2

MA1(V(φ1)− α1)2 +
1
2

MB1(A(φ1)− β1)2

+
1
2

MA2(V(φ2)− α2)2 +
1
2

MB2(A(φ2)− β2)2.
(9)

We use gradient flow method to carry out our computational
process. For each step we update both φ1 and φ2.

∂tφi = −δEM
δφi

, i = 1, 2. (10)

Theoretical analysis [2, Theorem 2.6] shows that as the penalty
energy EM reaches its local minimum, the total energy E is also
minimized if the penalty coefficients MAi and MBi both tend to
infinity.

Numerical Results

Our computational domain is set to be [−π, π]3. The mesh size
is always set as 65x65x64. The Bending regidity is always fixed
at 1.00 otherwise indicated. The coefficient γ before the variation
is always set at 0.50.

Flat contact of a doublet
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Contact of a rouleaux

The pics on the first row are from [3].
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