Semi-Permeable Deformable Vesicles in a Viscous Fluid

Abstract |

Aquaporins are channels located on cell membranes that facilitate the movement of water
into and out of a cell at much higher rates than osmosis. Studies have demonstrated that
this transport across cell membranes plays a critical role in cell movement. We apply a
high-order boundary integral equation method to simulate the motion of a single vesicle
with a semi-permeable deformable membrane in a variety of Stokes flows. The dynamics
are compared with impermeable vesicles.

‘ Introduction |

Vesicles are deformable
capsules that are:

e Submerged in and filled with
an incompressible viscous -
fluid ~

¢ Resist bending

e Locally inextensible

e Used to model red blood cell
suspensions

‘ Governing Equations |

The fluid and vesicle equations are
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Figure 1: Q is the unbounded fluid domain and ~
is the vesicle membrane. In addition to the vesicle-
induced flow, a shear flow is imposed in the far field.

—Vp + pAu = 0, x € {) conservation of momentum,
V-u=0, x € () conservation of mass,
[T]|n = f, x € v force balance,
f=1g+fp, X € v membrane force,
fp = —KpXssss, x € v bending force,
fr = (oxg)s, x € v tension force,
d . -
u— d_}t( = [(f - n)n, x € v slip boundary condition,
d . .
Vo - d_}t( =0, x € v local inextensibility.

A boundary integral equation formulation places all unknowns on the vesicle interface

= () + S0, x ey
Sitloc) = o [ (“loep+ 5T )ty r=x-y, o=l
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The area is not constant and satisfies

dA
= 5L(f . n)ds. (%)

‘ Numerical Methods |

e Discretize the vesicles at collocation points
e Fourier differentiation to compute fz and f;
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e Evaluate the weakly-singular single layer potential S|f|(x) with Alpert quadrature
e Time adaptive spectral deferred correction that applies IMEX-Euler twice per time step

‘ Numerical Examples |

Quiescent Flow
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Figure 2: The evolution of a semi-permeable vesicle in a quiescent flow to a circle.
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Figure 4: There is an asymptotic reduced area (RA) that depends on the water flux coef-
ficient, 3. The analytic expression (x) is used to predict the RA values of each curve with
first order accuracy.
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Figure 5: The final RA does not depend on the initial RA or vesicle shape. In this figure,

8 =1 and all vesicles have the same length.
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Table 1: We compare impermeable vesicles
with initial RA values equal to the final RA
values of a semipermeable vesicle. Semi-
permeable vesicles reach higher inclination
angles, which can affect the effective viscos-

1ty.

‘ Discussion |

¢ The steady-state shape of a semi-permeable vesicle in a quiescent flow is circular.

e A semi-permeable vesicle in shear flow tank treads.

e The area of the vesicle is characterized by the flux (x).

e The final RA of a semi-permeable vesicle depends on the water flux coefficient and the
initial length of the vesicle.

e The final RA of a semi-permeable vesicle does not depend on the initial RA or shape.
e In a shear flow, semi-permeable vesicles tank tread at a different inclination angle than

clean vesicles.

e Future work will include a concentration gradient of a solute.
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