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Introduction
Many physical systems are characterized by the presence of multiple spatial scales. Numerical simu-
lation of such types of systems poses a significant challenge. One of the most widely-adopted approaches
to address this issue involves the use of a non-uniformly spaced mesh with a hierarchy of grid resolutions.
Such approaches can be broadly classified as adaptive mesh refinement (AMR) methods.

Rather than refine one computational cell individually, AMR methods typically create a hierarchy
of grid levels by refining large collections of cells (blocks) around non-smooth solution features.

Figure 1: An example of a quadtree structure with three mesh
levels. Blocks 2, 3, 5, 6, 7, 8, and 9 are leaf blocks on which the
numerical solution is advanced.

Block-based refinement is typi-
cally preferred over cell-based re-
finement for reasons of computa-
tional efficiency. Shown in Fig-
ure (1) is a quadtree structure
used to organize the block hierar-
chy.

One major drawback of block-
structured AMR is the ‘over-
resolution’ of many cells in the mesh
which occupy a smooth part of the so-

lution and are only required to satisfy the block structure format. A sub-optimal mesh can also be the
result of the following rules governing mesh refinement:

i There can be a difference in refinement level between adjacent blocks no greater than one.

ii A complete set of child blocks must be produced for any block that is refined.

A method for dealing with multi-scale problems on uniform grids was introduced by Harten [1],
which uses a multiresolution (MR) representation of the data in order to decrease excessive com-
putations in smooth regions. The idea was to reduce the number of costly flux evaluations while main-
taining a prescribed level of accuracy. In the present work, this scheme is generalized to block-structured
AMR discretizations. Furthermore, we expand the original Harten’s method to adaptively calculate the
equation of state (EOS) and reactive source terms, as these are often the most computationally demanding
aspects of complex, multiphysics flow simulations.

Methods

Preliminaries
In the present work we are interested in numerically solving conservation laws of the form{

ut + f (u)x + g(u)y = s(u), x ∈ R2

u(x, 0) = u0(x),
(1)

where u represents the vector of conserved quantities, f (u) and g(u) are the flux functions, and s(u)
is a source term. In the finite volume formulation, the solution quantities are approximated by a volume
average defined over a target cell Ii,j =
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u(x̂, ŷ, t)dŷdx̂, (2)

where h is the cell width. We introduce a set of nested grids

Gl =
{

(xli, y
l
j)
}Nl

i,j=0
, xli = i · hl, ylj = j · hl, hl = 2L−l · hL, Nl = NL/2L−l, (3)

on the given domain where l = 1 represents the coarsest level of resolution and l = L represents the
finest. A multiresolution decomposition is performed on the solution field at each timestep, given by

MvL =
(
dL,dL−1, . . . ,d1,v1

)
, (4)

whereM is the linear transform operator and dl are the detail coefficient vectors. The detail coefficients
are a measure of the local smoothness of the solution. They are then used to guide the block-structured
mesh adaptation by creating a mask M as

Ml
i,j =

{
1, if |dli,j| > εl

0, else,
(5)

where εl is a level-dependent threshold, determined by the user.

Multiresolution scheme
Once the mesh is fixed, the multiresolution basis is used to interpolate quantities that are otherwise ex-
pensive to calculate in the over-resolved regions of the mesh. We consider a general function of the
solution,

φ(v) =

∫
Ω
q(v(x)) (6)

that must be obtained at the locally finest level of the mesh. The function q is assumed to depend smoothly
on v, meaning that the regularity analysis on v is a good estimate for the regularity analysis on q itself
or φ. Specifically we use the function φ as a placeholder for the divergence of the flux, reactive source
term, and EOS. The compressed multiresolution basis is used to obtain an approximate representation φ̃L

such that the error between it and the true function is bounded by

||φL − φ̃L|| < ε. (7)

The process of obtaining φ̃L proceeds by first calculating directly the values at the coarsest level of res-
olution φ1. Then the values at finer levels are either computed directly or interpolated from the adjacent
coarse level depending on the mask M.

Results

Hawley-Zabusky problem

In the Hawley-Zabusky problem [3], a planar shock passes through an oblique density-stratified inter-
face. The density contrast creates a rolling tendency along the interface as the wave is allowed to travel
faster in the less dense medium than in the denser medium. The top left panel in figure (2) shows the
initial roll-up along the interface, while the lower panel shows the MR detail coefficients which clearly
have larger values in region occupied by non-smooth flow features such as shocks, acoustic waves and
material interfaces.

Figure 2: Left: Multiresolution coefficients are used to identify the shock waves, vortices, and weak acoustic signals, and
guide the mesh refinement accordingly (bottom). Block outlines are shown in white. Right: The vortical structures along
the interface at final time (top). Solution error between the reference and MR solution at the same time (bottom).

We test the effect of interpolating fluxes on the adaptive mesh according to the mask. Due to the complex
and frequent interaction of acoustic signals, this problem does not offer much savings for the MR scheme,
however it is useful for error analysis. We find that the error remains well controlled, even at late times.
The given simulation uses a tolerance of ε = 10−3 for mesh refinement and 10−4 for flux interpolation.
The bottom right panel of figure (2) shows the difference between the reference and MR solutions on the
adaptive mesh. The error is within the expected ranges.

Cellular detonation

The cellular detonation problem [2] involves two-dimensional detonation of carbon under de-
generate conditions and is designed to study the complex interaction of transverse shocks be-
hind a perturbed detonation front. The detonation front instability is triggered by small den-
sity perturbations introduced in the upstream region. This instability ultimately manifests itself
into triple points which oscillate along the detonation front over time. Emanating from these
triple points are transverse waves which create the conditions for turbulence behind the front.

Figure 3: Detonation front in quasi-steady state. The triple point
hotspots (regions of high pressure and temperature) are clearly vis-
ible along the detonation front, as are the transverse waves in the
wake.

We use this problem as a test bed
for the EOS and reactive source
term interpolation. The computa-
tionally expensive Helmholtz EOS
is required due to the extreme con-
ditions necessary for burning to oc-
cur. This combined with the inte-
gration of the reaction network it-
self dominate the total cost of the
simulation. Figure (3) shows the
detonation front in quasi-steady
state. Most of the savings from
the MR scheme in this problem
come from the region ahead of
the detonation front, where the mesh is highly refined but the solution is constant. The error
is assessed by computing the difference in the lateral average of several species (carbon and sil-
icon) and the nuclear energy generation rate, ė. We find that the error is within the expected
tolerance. Figure (4) shows the difference in the lateral averages around the detonation front.

Figure 4: Error in lateral (spanwise) averages of
species and nuclear energy generation rate.

Conclusions

The multiresolution scheme is used to reduce the
number of flux, EOS, and source term calculations
on block-structured AMR grids. It is found that the
scheme significantly reduces computational effort
without adversely affecting the numerical solution.
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