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Abstract
All observed data are samples produced from unknown stochas-

tic processes. Determining the underlying distributions giving rise to
these observations is an important task in many disciplines such as ma-
chine learning and Bayesian non-parametrics. Often times, these dis-
tributions are high in dimensionality, multimodal and complex with
discontinuities such as jumps and edges. It is difficult for traditional
parametric models to capture the structure of these distributions. Non-
parametric techniques such as Kernel Density Estimators (KDE) pro-
vide more expressive power, though still suffer from the curse of di-
mensionality. Here, we demonstrate a non-parametric kernel-based
method that side-steps the curse of dimensionality by approximating
marginals of the true distribution and combining them hierarchically
to reconstruct the full joint. We start by showing how a local learning
rule from neuroscience called Hebbian Plasticity minimizes the reverse
Kullback-Leibler divergence between a single kernel and an unknown
distribution. This leads to each kernel finding modes in the marginal
distributions. We then show how subsequent kernels listening to in-
put from the approximate marginals learn to approximate the joint on a
lower dimensional manifold.

An Upper Bound for the Reverse
Kullback Leibler Divergence
The Kullback-Leibler Divergence (KL) is often used to measure
dissimilarity between two distributions Q and P [1].

KL(Q||P ) = EQ
[

log
q(x)

p(x)

]

where q(x) and p(x) are the densities of Q and P respectively.
Minimizing with respect to q(x) results in mode-seeking behav-
ior. However, if the density p(x) is unknown then minimization
cannot be performed. To address this we devise an upper bound
that removes the density p(x)

KL =

∫
q(x)(− log p(x))dx +

∫
q(x) log q(x)

The term p(x) only appears in the cross entropy term so we use
a straight line to mostly bound − log p(x) from above

− log p(x) ≤ log λ

1− λ
(
p(x)− 1

)

Which holds for λ ≤ p(x) ≤ 1. For example the upper bound is
shown below for λ ≈ 0.007.

Substituting the upper bound for− log p(x) back into the KL we
see that the unknown density p(x) has been removed from within
the expectation:

KL(Q||P ) = EQ
[
− log p(x)

]
− EQ

[
− log q(x)

]
≤ EQ

[
k
(
p(x)− 1

)]
−H [Q]

≤
∫
q(x)k

(
p(x)− 1

)
dx−H [Q]

≤ k

(∫
p(x)q(x)dx− 1

)
−H [Q]

≤ k
(
EP
[
q(x)

]
− 1
)
−H [Q]

where H [Q] is the entropy of Q and k = log λ
1−λ . To minimize this

upper bound, we no longer need to know the density p(x), we
need only be able to sample from the distribution P (x).

Minimizing the Upper Bound
Assume the unknown distribution P is the universe. It con-
stantly generates stimuli in the form of photons, molecules,
pressure waves, and more. In other words, we don’t know p(x)
but we can sample from P , or more precisely P constantly gen-
erates its own samples. We next assume the input and output of a

neuron can be modeled by a Gaussian. The mean µ of the Gaus-
sian are the weights of the neuron and an isotropic covariance
Iσ2 is the bias or soft firing threshold. With these assumptions,
we show that minimizing the upper bound results in a learning
rule that is functionally equivalent to Hebbian Plasticity.

Let q(x|θ) be the pdf forN (µ,Σ) where θ = {µ,Σ}, x,µ ∈ IRk

and Σ ∈ IRk×k. With q(x) parameterized, the upper bound can
be expressed as a function f (k, θ) because both expectations are
over x

f (k, θ) = k
(
Ep
[
q(x|θ)

]
− 1
)
− 1

2
log |2πeΣ

Where we used the analytic form of the differential entropy for
a multivariate Guassian distribution.

Stochastic Optimization
We now proceed with traditional optimization techniques by set-
ting the gradient with respect to θ equal to zero. Here we use the
pathwise derivative (PD) to calculate the gradient of the expec-
tation. This amounts to moving the gradient inside the integral
and thus inside the expectations. This procedure is always valid
provided the argument of the expectation is continuous and ev-
erywhere differentiable.

∇θf (k, θ) = kEp
[
∇θq(x|θ)

]
−
(
0,

1

2
Σ−1)T

To allow more transparent analysis we express the gradient in
terms of its components

∂f

µ
= kEp

[∂q(x|µ,Σ)

∂µ

]
∂f

∂Σ
= kEp

[∂q(x|µ,Σ)

∂Σ

]
− 1

2
Σ−1

Substituting the known partials for the multivariate Gaussian
back into our gradient terms we arrive at

∂f

µ
= kEp

[
q(x|θ)Σ−1(x− µ)

]
∂f

∂Σ
= kEp

[
− q(x|θ)

1

2
(Σ−1 − Σ−1(x− µ)(x− µ)TΣ−1)

]
− 1

2
Σ−1

We now employ the Robbins-Monroe algorithm to determine the
optimal parameters for the Gaussian q(x) [2]. To ease notation,
let qn = q(xn|µn,Σn) and Cn = (xn−µn)(xn−µn)T which is
the empirical Fisher matrix that approximates the Hessian giv-
ing us second order information in our update. After observing
the nth sample from p we update the Gaussian as follows.

µn+1 = µn + αkqnΣ−1
n (xn − µn)

Σn+1 = Σn + β
[
kqn
(
Σ−1
n CnΣ−1

n − Σ−1
n

)
+ Σ−1]

Let us compare the update rule in a single dimension to the tra-
ditional Hebbian Learning rule. Where we choose α = σ3 and
β = σ4.

µn+1 = µn + kσnqn(xn − µn)

σ2
n+1 = σ2

n + kσn
qn
2

[(
xn − µn

)2 − σ2
n

]
+ σ3

n

Example in 1D
To demonstrate the learning rule we create an artificial distribu-
tion P in one dimension and allow three neurons to listen to the
random samples it generates.

We visualize the initial state of the randomly configured neu-
rons and the final state after observing many sample from P . We
choose P to be a three mode Gaussian mixture model all with
equal variance σ2 = 0.001

p(x) =
1

10
N (0.2, σ2) +

3

10
N (0.5, σ2) +

6

10
N (0.8, σ2)

We randomly initialize the three Gaussian neurons qi with dif-
ferent means and show the initial state below.

The blue vertical line is a sample x drawn from the P distribu-
tion. It is presented to each neuron and their weights and thresh-
old are updated according to the update rule derived above. As
we showed, this update rules stochastically minimizes the re-
verse Kullback-Leibler divergence leading to mode-seeking be-
havior.

As we see above, each neuron converged to a mode or local ex-
trema of the data generating distribution’s pdf p(x). In this way,
the neuron has become a detector for how much of that feature
is present in any given observation.

Higher Dimensions

In higher dimensions we see that the hierarchical nature of neu-
ral networks allows us to approximate more complex distribu-
tions. In particular the first layer will approximate lower dimen-
sional marginals.

Subsequent layers project into higher dimensions and learn to
approximate the true distribution on a lower dimensional mani-
fold
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