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Abstract
Models of public goods in networks typically rely on the realization of a static network structure between

participating entities. In many situations, however, for example in ad-hoc and peer to peer information sharing
networks, it may not be the case that the underlying network is fixed. Indeed, it may even be the case that nodes
are able to select the other nodes to whom they would like their contributions to flow directly, and have the
freedom to alter the direction of these outgoing value spillovers over time. We extend a model of contributions
in public goods games to incorporate a dynamic and endogenous process of network formation, using a struc-
tural approach. By developing reciprocal preferences which are compatible with a potential game formulation,
we derive a quantal response equilibrium which provides an expected distribution over not only contributions
within a network structure, but over the network structure as a whole. This model is a generalization of a class
of mean-field structural models known as Exponential [Family] Random Graph Models or ERGMs. We discuss
an experiment designed to test the role of behavioral preferences in strategic network formation, understand the
characteristics of equilibrium networks, and observe how participants change their behavior when provided with
information about others’ characteristics, such as reputation.

Introduction
How and why do individuals share with each other, in situations where it may seem illogical to
do so under the standard assumption of rational self-interested preferences? Much prior work has
been aimed at uncovering the root causes of this phenomenon, and has lead to a multitude of the-
ories surrounding the consistent deviation of individuals from canonical equilibrium behavior. In
this paper, we hope to unify theories of prosociality through the structural estimation of individual
preferences in a novel controlled laboratory setting.

While the decision environment which we study will share some similarities with dictator games,
standard linear public goods games, networked public goods games, and club goods, the introduc-
tion of a mechanism for endogenous network formation makes this environment truly unique –
both in substance and through its ability to statistically isolate and distinguish between different
forms of reciprocity and prosociality.

Further, this paper contributes to the new and growing literature on the formation of (pro-)social
networks; a notoriously complex problem to analyze and one with far reaching consequences and
applications. By limiting the size of the network, and collecting data on dynamic behavior, we aim
to gain some insight into the question of how social networks form and evolve to stability.

Objectives
1. Understand network formation in a voluntary contributions setting with a congestible resource
2. Develop a novel structural model of behavioral preferences in resource sharing environments
3. Examine the impact of providing various reputation information on the structure of networks

Theoretical Model
We can represent player decisions in a single period by a weighted, directed networks with implicit
self-links. Consider a set of players N = {1 . . . n}. A player in this set is denoted by i. Players be-
gin each round with an initial endowment ω, and complete a work task to increase their beginning
balance by yi. Each player is asked to simultaneously choose values for ci, their contribution to the
group exchange, and Ni, the set of other individuals to be included in the allocation of their aug-
mented contributions. The vector of all players contributions is denoted by C = [c1 . . . cn]. Each
player’s network Ni must always contain at least themselves, ∀i ∈ N, i ∈ Ni. Once players make
their decisions, all contributions are multiplied by a factor mi, and distributed evenly across the
players’ chosen networks. We define the value of the multiplicative factor mi to be the derivative
of a per-capita return function Ri : R × (Zn+1\{0}) → R, so that Ri(ci, |Ni|) = mi(|Ni|) ∗ ci.
The definition of a public good implies that mi ≤ 1, since otherwise a player has direct mone-
tary incentive to provide the good. Defining mi as such provides us the freedom to manipulate
the marginal per-capita return (MPCR) of an outgoing network Ni in terms of the number of links
made by player i, in order to account for asymmetries which may arise as part of the underlying
structure of the mechanism.

We define the overall network by the n × n adjacency matrix G. Elements of G are denoted by
Gij where Gij = 1 if Player j is included in the benefits of Player i’s public good, and Gij = 0
otherwise. Since ∀i ∈ N, i ∈ Ni, the diagonal elements of G are always equal to 1, that is,
∀i ∈ N,Gii = 1. IfNi = {i}, the payoff to Player i is equal to their initial endowment, plus the ad-
ditional balance provided to them through their work, and any benefits they receive from inclusion
in other players’ networks. If their network size is larger than 1, their payoffs will be reduced by
their contribution, and will include additional benefit from their portion of their own public good
provision. Then players’ material payoffs may be obtained from the following formula:

πi(G,C) = (ω − ci) +

n∑
j=1

Gji ∗mj ∗ cj (1)

Subjects are likely to receive additional utility from some prosocial preferences. For example,
under reciprocity, subjects gain some additional positive utility by sharing a portion of their public
good provision with another player who is sharing some contribution with them. A player’s recip-
rocal concerns should thus depend on both the players’ incoming and outgoing links, as well as
the overall amount received by both players as a result of a link. We use βi(G,C) to represent the
function of a player’s behavioral utility. It is important to note that the exclusive use of behavioral
concerns which rely on the existence of mutual connections between players is sufficient to reduce
the potential equilibria to networks in which players form only mutual links in equilibrium. This
reduces the size of the space of possible network equilibria, and substantially reduces the com-
putational load of finding equilibrium networks. Given a group’s behavioral considerations, and
incorporating bounded rationality through a stochastic preference shock εi, the overall utility of
Player i will then be given by:

Ui(G,C; θ) = πi(G,C) + βi(G,C, θ) + εi (2)

These individual preferences can be aggregated as a potential game [6, 1], with the following
potential function:

Q(G,C; θ) =

n∑
i=1

(mi(G)− 1) ∗ ci +

n∑
i=1

n∑
j>i

GijGjirij(G,C) (3)

If we assume that the random shocks to preferences follow an extreme value type-I distribution,
and that the reciprocity function is linear in parameters, then the network will evolve as a Markov
chain with a unique stationary distribution over the space of networks, of the form:

f (G,C) =
exp[θ′t(G,C)]∑

Ω∈G
∫
Cn exp[θ′t(Ω, γ)]dγ

(4)
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Figure 1: Classification of Network Topologies.
(a): In the case of a dense or complete topology, the network is identical to a standard public goods game with n = 4.

(b): A circle network is an example of a symmetric, regular graph. Here, any contribution a player chooses is split
between themselves and their two neighbors. (c): In the case of a pairwise matching, each player chooses one other

player to link with, and every link is reciprocated. (d): The empty network is equivalent to any network with no
contributions; this is the standard Nash prediction. (e): If different players have different numbers of outgoing links or

out degrees, then the graph is asymmetric and they may be facing different MPCRs. (f): A star network exhibits a
core-periphery architecture which is commonly observed in both empirical and experimental studies of network

formation. (g): Similar to the star network, but here there is an isolated node, making it a partial star. Note that nodes
who choose not to link cannot make positive contributions. (h): Remember that here, we are placing no restrictions on

who someone can link with; links do not need to be a mutual decision. That is, the adjacency matrix G need not be
symmetric. A network which exhibits these imbalances in linking is called directed.

This is an Exponential family Random Graph Model (ERGM). Which can be fit using maxi-
mum likelihood methods, due to the small size of networks. By collecting experimental data on
small fixed groups of size four, we can avoid the intractability associated with computation of the
normalizing constant for parameter inference in large network ERGM models.

Experiment Design

We hypothesize that providing information which enables direct reciprocity should increase gains
from the networks, by making efficient cooperative equilibria more salient. We place subjects in
groups of four, and have them play a network sharing game for 15 periods, after which they are
told there will be a second part to the experiment, but not told what that will be.

After 15 rounds, subjects are told the rules for the second part of the experiment. In the sec-
ond part, subjects remain in the same groups but are assigned new identifiers and play another 15
rounds of the game. In treatment sessions, subjects are also shown their incoming benefits from
the sharing of others in their group. We observe the effects of this intervention on several outcome
variables.

Results

We have conducted some analysis to analyse the impact of providing reputation information on
some properties of the networks that form. These include reciprocity, computed using a linear
formula rij(G,C) = micimjcj. Triggering direct reciprocity through the provision of reputation
information led to an increase in efficiency gains from the network of more than 100% relative to
the baseline treatment.

Table 1: Estimated Treatment Effect of Information Provision (Difference-in-Differences)
This table of regression results highlights the substantial impact of providing reputation information on the structure

of the networks that form between experimental subjects.

(1) (2) (3) (4) (5) (6) (7) (8)
Efficiency Reciprocity Costs Centralization

Information 0.0930∗ 0.166∗ 61.17∗ 70.81∗ 0.775∗ 1.214∗ -0.0420† -0.0746∗

Treatment (0.0225) (0.0281) (12.37) (13.69) (0.165) (0.227) (0.0170) (0.0281)

Constant – 0.151∗ – 40.29∗ – 2.395∗ – 0.407∗

(0.0105) (6.399) (0.181) (0.0210)
Fixed Effects Yes – Yes – Yes – Yes –
(Group)
N 1020 1020 1020 1020 1020 1020 1009 1009
Standard errors in parentheses, clustered for 34 groups
∗ p < 0.01, † p < 0.05
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