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MOTIVATION
� A graduate level textbook on numerical analysis typically contains

predictor-corrector and multistep time-stepping methods for advancing
ODEs in the first few chapters, followed by spatial discretization operators of
PDEs in separate ones.

� In real world applications, the discretization of a hyperbolic PDE consists of both
spatial and temporal components, and the order of convergence of a hyperbolic
PDE with spatial and/or temporal refinement is a function of both the mesh
spacing ∆x and the time step ∆t.

� I investigate the simultaneous dependence of the local truncation error of the
numerical solution of a hyperbolic PDE on ∆x and ∆t, for varying orders of
spatial and temporal discretizations.

TRUNCATION ERROR OF A HYPERBOLIC PDE
Theorem 1. Assuming the existence of a smooth solution of a hyperbolic PDE
ut = F (u, ux, uxx, · · · , x, t) at spatial locations xj for j = 1, 2, · · · at time level tn,
the exact solution at spatial location xj and time level tn+1 = tn + ∆t is
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and the numerical solution at spatial location xj and time level tn+1 obtained with
a time-stepping method of order β, belonging to the Method of Lines, is
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for k = 1, 2, · · · , β and α represents the order

of spatial discretization. The local truncation error can be expressed as
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6= 0. The global truncation error at a time
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CONVERGENCE OF GLOBAL SOLUTION ERROR
� Consider a stable numerical scheme with spatial discretization ∼ O (∆xα) and

a time-stepping method ∼ O
(
∆tβ

)
, and assume that the global solution error is

of the same order of accuracy as the global truncation error.
� For modeling the hyperbolic PDE ut = F (u, ux, uxx, · · · , x, t), the following hold

in the asymptotic regime, where the truncation error is dominated by the powers
of ∆x and ∆t rather than their coefficients:
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� A simultaneous refinement of ∆t and ∆x, at ∆t/∆x = γ, a constant, yields
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� Strategy: Given α, we need β ≥ α to obtain maximum possible order of
accuracy. But we gain no improvement in order of convergence for β > α despite
more work. So, optimum choice is β = α.

� Refinement Only in Space or Only in Time: By comparing the numerical
solution or the error between two successive spatial (or temporal) resolutions,
one can verify the order of the spatial (or temporal) discretization.

NUMERICAL RESULTS
� We perform convergence studies with a linear variable-coefficient advection

equation discretized in space with first-order upwind finite difference scheme
and piecewise parabolic reconstruction (PPR), and advanced in time with
first-order Forward Euler (FE1), and Runge-Kutta (RK) and Adams-Bashforth
(AB) methods, from second to fourth order.

� Starting with the mean solution in each cell, PPR interpolates the solution to the
edges. This interpolation is fourth-order accurate on a uniform mesh. Then it
applies the monotonized-central slope limiter, and adjusts the edge estimates to
flatten any local maximum or minimum, to ensure monotonicity.

� The following figures show convergence plots using first-order upwind (first
column) and PPR (second column) in space, and the above-mentioned
time-stepping methods: refinement in both space and time (first row),
refinement only in space (second row), and refinement only in time (third row).
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Refinement in Space
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Refinement in Time

FE1: s = -1.00
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Refinement in Time

FE1: s = -1.16 (last 2 pts)
RK2: s = -1.00 (best fit)
AB2: s = -2.03 (best fit)
RK3: s = -2.78 (best fit)
AB3: s = -2.90 (best fit)
RK4: s = -1.59 (last 2 pts)
AB4: s = -1.56 (last 2 pts)

CONCLUSION AND FUTURE WORK
� With the finite difference method, we have already reached the asymptotic

regime, and the order of convergence is exactly what is predicted by our theory.
� With the finite volume method using PPR in space, we have not yet reached

the asymptotic regime for some time-stepping methods, and may not be able to
do so before machine precision error dominates. However, we are approaching
the asymptotic regime, as evidenced by the reduction in the order of the
convergence slopes.

� The slope-limiting monotonicity-preserving strategies of PPR can reduce the
spatial and temporal orders of accuracy.

� Ongoing and future work entails extending our theory to parabolic PDEs and
high order discretizations in space and time.


