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Introduction

A kernel polynomial method (KPM) is developed to calculate the random phase approxi-
mation (RPA) correlation energy. In this method, the RPA correlation energy is formulated
in terms of the density of states (DOS) for the eigenvalues of the matrix obtained as the
product between the Coulomb operator and Kohn-Sham (KS) linear response function. The
integration over the eigenvalues is then calculated using KPM [1, 2]. Since energy differ-
ences between similar systems are of much interest in practice, we also develop a scheme,
atom-based correlated sampling (ACS), to accelerate the convergence of energy-difference
calculations. In the study, the KPM is used to calculate the isomerization energy between
acetone and 2-propenol and ACS is used to accelerate the convergence of energy difference
calculations. The KPM developed in this work, together with the ACS scheme, is expected
to be useful for calculating RPA correlation energy difference between two systems that
only differ in a local region, for example, calculation of adsorption energies of molecules
for surface catalysis. For these types of calculations, the computational cost of our method
scales quadratically with the system’s size.

Theoretical Methods

The RPA correlation energy within the adiabatic connection fluctuation-dissipation theorem
(ACFDT) formalism is written as

ERPA
c =

1

2π

∫ ∞
0

duTr[ln(1− χ0(r, r
′; iu)vc) + χ0(r, r

′; iu)vc], (1)

where vc(r, r′) = 1/|r− r′| is the Coulomb potential. χ0(r, r
′; iu) is the KS linear response

function at the imaginary frequency iu and can be explicitly expressed in term of KS orbitals
({φj(r)}), eigenvalues ({εj}), and occupation numbers ({fj}) as

χ0(r, r
′; iu) = 2

∑
j

∑
k

(fj − fk)
φ∗j(r)φk(r)φ∗k(r

′)φj(r
′)

εj − εk + iu
, (2)

where indices j and k loop over all the KS orbitals. Due to the fact the trace is invariant
under cyclic permutations, χ0vc in Eq. 1 can be replaced by v1/2

c χ0v
1/2
c , which is denoted by

M in this work, that is, M(iu) = v
1/2
c χ0(iu)v

1/2
c . To formulate the RPA correlation energy

using KPM, the RPA correlation energy becomes

ERPA
c =

1

2π

∫ ∞
0

du

[
g0c0µ0 + 2

∞∑
n=1

gncnµn

]
, (3)

Tn is the n-th order Chebyshev polynomial and {gn} are the Jackson kernels. cn is defined
as

cn =

∫ 1

−1

1

π
√

1− x̃2
Tn(x̃)[ln(1− (ax̃ + b)) + (ax̃ + b)]dx̃. (4)

{µn} are given by the trace of Tr[Tn(M̃)]

µn = Tr[Tn(M̃)] ≈ 1

R

R−1∑
r=1

〈r|Tn(M̃) |r〉 . (5)

Here |r〉 is a normal random numbers with zero mean and unit variance[1, 3]. To com-
pute the product of Tn(M̃) and |r〉, we use the three-term recurrence relation of Chebyshev
polynomials

Tn(M̃) |r〉 = 2M̃Tn−1(M̃) |r〉 − Tn−2(M̃) |r〉 , (6)

where M̃ is the rescale spectrum of the M that its eigenvalues are inside (−1, 1). The RPA
energy difference is

∆ERPA
c = ERPA

c1 − ERPA
c2 , (7)

where ERPA
c1 and ERPA

c2 are the RPA correlation energies of the system 1 and the system
2, respectively. In the ACS scheme, we calculate the RPA correlation contribution to the
atomization energy (AE) as

ERPA
AE,1 = ERPA

c1 −
Natom∑
i=1

ERPA
c1,atomi

(8)

ERPA
AE,2 = ERPA

c2 −
Natom∑
i=1

ERPA
c2,atomi

, (9)

where i runs over all the atoms in each system and Natom is the number of atoms. ERPA
c1,atomi

and ERPA
c2,atomi

are the atom i’s RPA correlation energies calculated using RPA-KPM, as de-
scribed above. The RPA correlation energy difference between the two systems is then
calculated as

∆ERPA
c,ACS = ERPA

AE,1 − ERPA
AE,2. (10)

Results

The performance of RPA-KPM (with and without using ACS) is investigated with the RPA
correlation energy difference for the isomerization of acetone to 2-propenol. Figure 1 shows
that isomerization of (a) acetone to (b) 2-propenol by transferring H6. In this example, ace-
tone is treated as the system 1 and 2-propenol is treated as the system 2.

Figure 1: Isomerization of (a) acetone to (b) 2-propenol by transferring H6. The oxygen, carbon, hydrogen
atoms are red, brown, and grey, respectively.

In Figure 2, we show the performance of RPA-KPM with respect to different number of
random vectors for this two similar systems. The benchmarks are obtained by calculat-
ing the RPA correlation energies using conjugate gradient method [4]. The performance of
RPA-KPM with and without using ACS is demonstrated in Figure 2 (a), which shows the
convergence of ∆ERPA

c with respect to the number of random vectors. 50 moments are used
in the calculations. The standard errors are denoted by the red and blue bands. Using ACS,
RPA-KPM’s results stay closer to the benchmark and have smaller standard errors.

Figure 2: (a) Convergence of the RPA correlation energy difference between acetone and 2-propenol with
respect to the number of random vectors, calculated with and without ACS. Standard errors are represented
by the red and blue bands. Benchmark is denoted by the dashed line. (b) Cost reduction for applying ACS to
each and to all the atoms. 50 moments are used.

The goal of ACS is to reduce the standard error from sampling ∆ERPA
c , which in turn

reduces the number of random vectors. Due to the central limit theorem, standard error
decreases as 1/

√
R, where R is the number of random vectors. The cost reduction (q) is

then related to the standard error as

q = 1−
(
σACS

err

σerr

)2

, (11)

where σACS
err and σerr are the standard errors for ∆ERPA

c,ACS and ∆ERPA
c , respectively. They are

related to the variances as σACS
err = 1

R

√
Var(∆ERPA

c,ACS) and σerr = 1
R

√
Var(∆ERPA

c ). The cost
reduction due to ACS is 72% (labeled by “All atoms” in Figure 2(b)). This corresponds
to an acceleration of 3.6. In other words, for a fixed error in ∆ERPA

c , the number of ran-
dom vectors needed by RPA-KPM with using ACS is 3.6 times less than that needed by
RPA-KPM without using ACS.

In order to examine each atom’s contribution to the cost reduction, we performed ACS for
each atom, separately. In Figure 2(b), the bar labeled by “H1” is obtained by applying ACS
only to H1. It is observed that all H atoms do not contribute much to the cost reduction due
to their small contribution to the total RPA correlation energy. Most of the cost reduction is
from C and O atoms. The sum of all atomic cost reduction is 82%, which is larger than the
“All atoms” reduction (72%). This is expected because samplings in the atomic regions are
not fully decoupled.

Summary and Outlook

In this work, we have developed a kernel polynomial method to calculate the RPA correla-
tion energy. We focused on calculating the RPA correlation energy difference between two
similar systems, which is of much interest in practice. In order to accelerate the convergence
of energy-difference calculations, we have developed the atom-based correlated sampling
method to accelerate the convergence of energy difference calculations. The convergence
of this example is much accelerated by ACS with a boost factor of 3.6. The above results
have been published in Electronic Structure [5].
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