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Abstract

We apply a high-order boundary integral equation method to simulate multicomponent,
semipermeable membranes in various Stokes flows. Our multicomponent vesicles are rep-
resentative of cell membranes containing aquaporins and are only permeable to water. This
semipermeability is important for many biophysical processes including cell migration and
cell rupture. Our semipermeability model depends on the membrane forces where the fluid
flux is proportional to the pressure drop. The multicomponent model uses the Cahn-Hilliard
equation to allow for phase separation between different lipid species. We consider vesicles
in quiescent flow and shear flow.

Introduction

Vesicles are deformable capsules
that are:
• Submerged in and filled with an in-
compressible viscous fluid

• Resist bending
• Locally inextensible
• Used to model biomembranes
such as red blood cells
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Figure 1: Ω is the unbounded fluid domain and γ

is the vesicle membrane. In addition to the vesicle-
induced flow, a shear flow is imposed in the far field.

Governing Equations

Following the work of Sohn et al, JCP, 2010, we define the lipid energy as

ET =
a

ε

∫
γ

(
f (u) +

ε2

2
|∇Σu|

2

)
ds, free energy,

f (u) =
1

4
u2(1− u)2, double well potential,
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ds, bending energy,

b(u) = bmaxu + bmin(1− u), bending modulus.

The fluid and vesicle equations are

µ∆u = ∇p, x ∈ Ω, conservation of momentum,
∇ · u = 0, x ∈ Ω, conservation of mass,

[[u]] = 0, x ∈ Ω, velocity continuity,
[[T ]]n = f , x ∈ γ, force balance,
dx
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= V n + T s + β(f · n)n x ∈ γ, dynamic equation for the vesicle,

V = u · n, T = u · s normal and tangential velocities
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and have the conditions

∇γ ·
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= 0, x ∈ γ, local inextensibility,

u(x) = γ̇(x2, 0), |x| → ∞, far-field condition.

We do a change of variables to the θ-L formulation. After this change of variables, the dy-
namics of θ and L are governed by
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with the inextensibilty condition
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To reduce the stiffness of the system, we extract the dominant terms in the governing equa-
tions at small spatial scales.
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The reduced area of the vesicle is defined as A/A0 where A is the area of the vesicle and A0
is the area of a circle with the same length as γ.

Numerical Examples

Semipermeable, Single-Component Vesicle in a Quiescent Flow
The steady-state shape is always a circle.
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Semipermeable, Multicomponent Vesicle in a Quiescent Flow
The steady-state shape is no longer a circle.

Initial concentration

u(α, 0) = ū + λ(3 cos(α)+

0.5 cos(3α) + 0.5 cos(4α))

ū = 0.3, λ = 0.05, α ∈ [0, 2π]

with bending modulus

b(u) = (1− u)bmin + ubmax

Semipermeable, Single-Component Vesicle in Shear Flow

• The reduced area of a semiperme-
able vesicle in a shear flow initial-
ized with four different reduced ar-
eas.

• The final reduced area is indepen-
dent of the initial reduced area, but
depends on the shear rate.

• Higher shear rates result in lower
final reduced areas.

Semipermeable, Single-Component Vesicle in Shear Flow

Semipermeable, Multicomponent Vesicle in Shear Flow

Discussion

• Have developed integral equation methods to simulate multicomponent semipermeable
vesicles.

• In a quiescent flow, single-component vesicles inflate to a circle, but multicomponent vesi-
cles inflate to non-circular shapes.

• In a shear flow, semipermeable vesicles tank tread or tumble depending on the lipid con-
centration.


