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Introduction
Many physical systems are characterized by the presence of multiple spatial scales. Numerical simu-
lation of such types of systems poses a significant challenge. One of the most widely-adopted approaches
to address this issue involves the use of a non-uniformly spaced mesh with a hierarchy of grid resolutions.
Such approaches can be broadly classified as adaptive mesh refinement (AMR) methods.

Rather than refine one computational cell individually, AMR methods typically create a hierarchy
of grid levels by refining large collections of cells (blocks) around non-smooth solution features.

Figure 1: An example of a quadtree structure with three mesh
levels. Blocks 2, 3, 5, 6, 7, 8, and 9 are leaf blocks on which the
numerical solution is advanced.

Block-based refinement is typi-
cally preferred over cell-based re-
finement for reasons of computa-
tional efficiency. Shown in Fig-
ure (1) is a quadtree structure
used to organize the block hierar-
chy.

One major drawback of block-
structured AMR is the ‘over-
resolution’ of many cells in the mesh
which occupy a smooth part of the so-

lution and are only required to satisfy the block structure format. A sub-optimal mesh can also be the
result of the following rules governing mesh refinement:

i There can be a difference in refinement level between adjacent blocks no greater than one.

ii A complete set of child blocks must be produced for any block that is refined.

A method for dealing with multi-scale problems on uniform grids was introduced by Harten [1],
which uses a multiresolution (MR) representation of the data in order to decrease excessive com-
putations in smooth regions. The idea was to reduce the number of costly flux evaluations while main-
taining a prescribed level of accuracy. In the present work, this scheme is generalized to block-structured
AMR discretizations. We denote the new scheme as the hybrid adaptive multiresolution (HAMR) scheme.
Furthermore, we expand the procedure to adaptively calculate the equation of state (EoS) and reactive
source terms, as these are often the most computationally demanding aspects of complex, multiphysics
flow simulations.

Hybrid adaptive multiresolution scheme
The MR approach considers a set of nested grids

Gl = {xli}
Nl

i=0, xli = i · hl, hl = 2L−l · hL, Nl = NL/2
L−l, (1)

on the given domain where l = 1 represents the coarsest level of resolution and l = L represents the
finest. The width of a computational cell on level l is hl. The MR procedure encodes solution data on
the finest grid as coarse-grid values plus a series of differences obtained on finer levels. These dif-
ferences are the smoothness indicators, known as detail coefficients. They are computed as the difference
between the data on level l + 1 and values interpolated from data on level l,

dli = ul+12i − ũl+12i , (2)

where ũl+12i is the interpolated data. Then an adaptive mesh may be defined by truncating coefficients
whose absolute values are smaller than a given tolerance ε.
Once the significant detail coefficients are identified, a block-structured mesh is constructed. The
coefficients are then used to identify regions of the mesh where costly evaluation of the numerical
flux, reactive source term, or EoS may be avoided and replaced with interpolation of values already
obtained nearby. This workflow is shown for an example AMR mesh in Figure (2).
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Figure 2: General flow of procedures for the solver-adaptive component of the HAMR scheme. On the local MR hierar-
chy, lighter regions indicate the ghost cell region of the block.

Results
In the Hawley-Zabusky problem [3], a planar shock passes through an oblique density-stratified interface.
The density contrast creates a rolling tendency along the interface as the wave is allowed to travel faster
in the less dense medium than in the denser medium. The top left panel of Figure (3)

Figure 3: The morphology of the flow in the Hawley-Zabusky problem is shown with numerical schlieren density images
for the baseline AMR solution (top row) and HAMR solution with κ = 1 × 10−2 (bottom row). The panels in the left
column show the morphology shortly after the shock passed through the interface (t ≈ 180 s), while the structure of the
interface at the final simulation time is shown in the right column. Note that the structure of the HAMR solution closely
matches that of the baseline solution at early times. There are however discernable differences in the small scale structure
of the mixed region at the final time.

shows the initial roll-up along the interface for the baseline AMR solution, while the top right panel
shows the mixed region at late time. The bottom panels show the HAMR solution at the corresponding
times. While there are some differences in the flow structures, the overall behavior is much the same.
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Figure 4: The integrated vorticity evolution for the Hawley Zabusky problem is shown
in the left panel for the reference uniform mesh solution (solid blue line), AMR solution
(solid red line), and a set of HAMR models (black lines). The time evolution of the rela-
tive error in integrated vorticity is shown in the right panel during the same time window
for each HAMR solution.

We test the ef-
fect of interpolat-
ing fluxes on the
adaptive mesh
according to the
significant detail
coefficients and
find that the er-
ror remains well
controlled, even
at late times. The
given simulation
uses a tolerance
of ε = 10−2 for
mesh refinement
and multiplica-
tive safety fac-
tors ranging from
of 10−4 to 10−1

for flux interpo-
lation. The left
panel of Figure
(4) shows the evolution of the integrated vorticity at late time for the uniform mesh, baseline AMR,
and HAMR simulations. In the right panel is the corresponding error. We see that the effect of interpo-
lating fluxes does not introduce significantly more error than the AMR itself.

Future work

Adaptive models with robust error estimation
The main disadvantage of using MR indicators for time-dependent problems is that the in-
dicators alone cannot reliably be used detect time-dependent features. Some intuition as to

Figure 5: LTE estimates and resultant block-structured adaptive mesh
for the Isentropic vortex problem.

where features may develop must
be supplied by the user.
In order to estimate the local
truncation error (LTE) for time-
dependent problems, the tech-
nique known as Richardson ex-
trapolation may be employed.
This requires the solution to be
advanced on grids of differing
spatial resolution. Then the er-
ror on the coarser grid can be es-
timated according to

Eh/2 ≈
uh/2 − uh
2p − 1

, (3)

where p is the nominal order of
the method. This can be used
to guide the AMR, or to pro-
vide additional error estimates
for MR methods.
Estimates of the LTE for the Isentropic vortex problem [2] are shown in Figure (5). These estimates will
be compared with the actual error obtained using the analytic solution.
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