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Abstract

Over the past several years, a small community of researchers has arisen to develop and apply statistical Shape Analysis and Morphometrics to the study of Acoustics and other Time-
Varying signals. Here, we discuss the theoretical underpinnings of Shape Analysis and Morphometrics as it applies to Acoustics and Signals. Ultimately, we show in this work that direct
theoretical parallels can be drawn from the concepts and techniques of Morphometrics to generate meaningful and valuable results in the field of Bioacoustics. We discuss how this theoretical
framework differs from previous work and provide new insights into Bioacoustics and acoustic ecology. Using this theoretical framework, we build a pipeline for analyzing bioacoustic data in
a Morphometric context, and we show that the pipeline can be highly scalable to large problems. We also discuss algorithmic and implementational aspects of this pipeline including those
for the extraction, alignment and analysis of individual pulses in a time-varying signal with pulse-like properties.

Introduction and Foundations

• Signals consist of a stream of data for which each data point is often correlated to its
neighbors. Usually, they vary in response to some external stimulus or variable, such as
the passage of time (2). Sound is one such signal.

• We assume here that all signals under consideration are of finite length and may only be
sampled to an arbitrary but not infinite precision.

Definition 0.1. A Call is any set of n ordered pairs {(k1, t1), ..., (kn, tn)|ki, ti ∈ R}
where ki represents an amplitude of a pressure wave in a fluid medium sampled at a
specific time, ti, which represents a time such that t1 < t2 < ... < tn.

Definition 0.2. A Pulse is any subset, P of length m of a call C such that within
a given window of size ω, noise mean µN and noise variance σN, then P is
{Ci, ..Ci+m|Ci ∈ C, i,m, ω ∈ [1, .., ||C||], |µ(Ci, ..Ci+ω)| > |µN |, |σ(Ci, .., Ci+ω| > σN))|}
Definition 0.3. A Shape is a set of n-dimensional points X1, ...Xn ordered by an
index i such that i is strictly increasing. It is the information left in these points
when rotation, translation and scale are removed (5).

Theorem 0.4. In the case of a linear two-dimensional shape (where x1 < x2 < ... <
xn), the definitions of Pulse and Shape are logically equivalent.

Proof. Given a two dimensional shape and a single pulse, the shape consists of a finite set
of points, called landmarks, with x-position x, y-position y and index i. The values x, y
may be any real numbers and i may be any positive integer. The pulse consists of a finite
set of points with position along the t-axis, t, an amplitude a and an index i. The values
of t, a may be any real number. In both cases, the ordering of i must be preserved for the
definition to remain true. Thus if ti is strictly increasing, t, a is simply a relabeling of the
axes x, y and thus they are equivalent. Therefore, a pulse is just a 2D shape.

• This fact lets us consider pulses to be shapes. Thus, the tools of Morphometrics apply.

Pulse Extraction

Pulse Extraction Theory

• The definition of the pulse leads nicely to a method to extract pulses from a call. For each
call in your set of calls, loop over every neighborhood of size ω with or without overlap,
if the mean and variance exceed the tolerance, then add that to the current pulse being
built. Once the mean and variance have fallen below the tolerance for enough window
steps, finalize the pulse. If there is more than one pulse in a call, there will be multiple
pulses in the list of pulses for each call. This will be O(N 2) in the worst case.

Efficiency and Scalability

• Single-Pulse runtime is O(NklogN) where k depends on the clustering algorithm chosen.

• GPA and the Pulse Extraction algorithm are nearly embarassingly parallel.

• Both are capable of mutli-level parallelism as well (multicore and multi-node).

• Thus, several terms in the runtime analysis can be divided by (M*P) where M is the
number of nodes available and P the number of processors.

Pulse Alignment

• In order to accurately measure the difference between n shapes, the shapes must be
aligned such that each point in shape i is closer to it’s corresponding, homologous point
in shape j than it is to any other non-homologous point in shape j (5).

• Since we know that shapes and pulses are just different words for the same thing, the
Generalized Procrustes Analysis method may be applied here to optimally align n pulses
to one another (5). GPA is O(N 2logN) in the worst case (1).

Pulse Alignment

Analysis

• Once the pulses are maximally aligned as shown in Figure 2, then we may compute the
shape distance between all pairs of aligned pulses, as would be done in Morphometrics,
thus generating an NxN distance matrix where N is the number of aligned Pulses to be
analyzed (4).

• We may use standard techniques to analyze this distance matrix such as Neighbor-Joining
Clustering, in order to generate a tree of shape distances with known branch lengths such
that dialect groupings may be seen (3). Neighbor-Joining is O(N 3) in the worst case (3).
Most of the commonly used clustering methods are also O(N 2logN) or O(N 3) (4).
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