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Genes trees are estimated for a variety of reasons in phylogenetics: understanding E;g;EF g ESFT 2R FTUT _cEE U cEER U oSSR U cEEEE E;g;g;% 0.75 o _ ¢ ¢ ° fEEE_ == E;T

evolutionary history, estimating population size, estimating migration rates, estimating O° B sEEESRR ocmmEEM EEEEER ESEERER e s B === S =5 w0

coalescent times, or estimating the historical rate and patterns of dispersal. For several %E%EF g BT8R SRR mR R e % 050 o p 5—_ ===7

applications, gene trees serving as input are assumed to be free of error[1][2]. Although §====;:EEE :fff:ﬁff fﬁﬁf fﬁiﬁf EEEEEEfE —— X s o o ¢ 0 ; = fff;

some summary methods have statistical guarantees in the presence of Gene Tree A R e e  F i i - e ¥ s o ; e ¢

Estimation Error (GTEE), this does not apply to any of the standard coalescent based | Commmmmm- gmms- oz gmem- gm mme s me oo = g R e — e —— ps . o ——

methods [3]. The downstream effects of GTEE are also unknown for PhyloMapper and ST g ool iR aRSSEC MEC BEE B , ¢‘sESSss=s=s SSsssss= ————— IS o : ===S====

most other methods. In order to avoid unknown effects, maximizing gene tree accuracy is < EEE;E“ i AR = g= K ;;==____E ====S==== E - i e

highly desirable. ga o SRR =S = = 8 F  ———————el il R |- - F .

Sources for gene tree estimation error come from a variety of sources. Insufficient signal is 3 5 EmEEs o == a w0 FrEEEEEEEEE =————=—S=— SEEEahEa. ; T gﬁ 3 —— e

a common problem encountered when the mutation rate is low and locus length is short. @ T =& - e —————__ T——————= : ——= e

Model mis-specification, missing data, and saturation, and method selection can also have JEEE o T 1 - e o S ==

a substantial impact on GTEE. Intra-locus recombination can also lead to GTEE when a e - 20 "= = ========= T - ——— e [l

single history is estimated using data containing a mixture of discordant histories. Unlike E”" ; EEEEEEEEE o § —

the many sources of error mentioned above, the effect of violating the standard JEEEE OB == g 2 ————————— 9 | o o . :

assumption of recombination free loci has not well been explored. §=====_ _ . o - e —— = e ——— -1.00 : g . % g —_— o

This simulation study identifies the method that produces the most accurate gene tree for Population Scaling Parameter * (Default Human)  1© prinnLs 0062 160 40 10 o025 ooss _30 20 10 0 10 20 30 o e L ohs " ook 06

each region of parameter space. Users aware of their biological system’s location in Population Scaling Parameter * (Default Human) Population Scaling Parameter * (Default Human)

parameter space can use this information to make informed decisions about which Figure 3. Accuracy of gene tree estimates in the presence of recombination. Robinson  Figure 4. Ability of ARG methods to infer number of recombination breakpoints. Figure 6. MDS plot of simulated tr:EsAai}:Eeltimated Tsinfer trees for 33.000

methods best suit their needs. This study tests the accuracy of various methods in the Folds diftar_lce between Simuléted MS trees ar]d Tree estimated _from concatenated loci Ratio O_f E_Stimated breakpoin.ts to simulated break points for each ARG method. base p ai' rs of an example replicate (recombination scaling 1.0, populati 0’ N Figure 7. Accuracy of gene trees estimated on predicted c-genes in isolation.

presence of recombination. The simulation scenario mirrors human evolutionary histo ry of certain size. The axes remain the same a.s Figure 2, but.there |s.a.column for each The ratlo.ls co.mpfjted as (Estimated .BP —.Tru.eBP)/(Iarger number); therefore, . scaling 1.0, and substitution rate 0.0000001). Filled circles rep;resent simulated Similar to Figure 2, but simulated c-genes are replaced by c-genes estimated by

with, population history, recombination rate, population size, and substitution rate. Itength of concatenated ?e"e' Large locus S12es struggle w!th obta.mmg an accurate gene underestl.matlon 's blue and overestimation Is red. All three .met.hods doa poor iob trees, and open squares represent estimated trees. Color represents the Tsinfer. Robinsor! Foulds distam‘:e between simulated gene trees and c-gene
ree for the whole locus; the trees are too discordant to fit one history. For each of capturing the total number of breakpoints. Some recombination events in MS (estimated by Tsinfer) trees estimated by Fast Tree (partition dataset into

.. .. o . . . . . .. location of the tree in the region of the 33,000 base pairs. Tsinfer’s estimated J . S
combination of recombination rate, substitution rate, and population size there is an do not impact tree topology or branch lengths, so perfect estimation is almost . ) ) ) regions estimated to be recombination free). For most of parameter space
trees are clearly near the simulated trees, but for this replicate there is some

optimal length of locus to balance signal from c-gene length and discordant signal from impossible, yet for most of parameter space the methods are far off. Gray boxes bi there is insufficient signal to obtain an accurate gene tree. The ARG methods
recombination. represent regions when less than 6 out of 20 replicates succeeded. 1as. are using neighboring information to estimate smaller c-gene regions.

ARG Like RF for 1000 BP

ARG Like RF for 100000 BP Discussion

This simulation emulated the model of human evolution, the Out of Africa model.
The model’s structure contained an ancestral population located in West Africa that
branched into six major subgroups as humans dispersed to new continents. | matched
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Relate Tsinfer RentPlus Higher recombination rates and population sizes make estimating evolutionary histories more difficult. Recombination brings together different
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tree divergence times and population sizes from a tree used in Huang 2019 [4]. Next SE == EE = EE;{ f 3 EEEE__ EE EEEE EEEE = § 0 evolutionary histories on the same physical copy of DNA; this impacts gene tree accuracy because the DNA supports multiple evolutionary
gene trees were simulated from the historical population model with recombination. 15 === B ———— = g = == E==== —=——— ?, histories, yet the model tries to force these different histories under one evolutionary history.
The program used to simulate trees, Msprime, returns a whole genome genealogical E = §:§:§:::= éEEE— =§EE == E EE_EE _§ :Oncfreaswr\]g population size |n'cr(?ases the oTc:\urrencle o: |EFompIEte Irllneaie sortlnE: Incorgplete Imeage;o[]tmg occlur§ whhejn a gege fallsbt.o cc?alesce
history for a designated number of base pairs represented by a collection of : = :;;::EEE = === = = == =5 100 g ore the r::sst rece'nt speugtmn event;c e result o ft is ca.n .e.t at t' e gene |storY oes not match the population history. Recombination can
genealogies [5]. We varied the following population history parameters: sequence "2 SSESe= ==="=== o —— ——F — — T mix these different histories into Parts © the senome for all 'r?d'V'.duals in the prUIatlon' L . L L
length, recombination rate, and scaled population size. The values of these _§§: = ;%%55— G = = == —— == ML methods perforrp very poorly in regions Wlth. h'lgh recombination rate and high popglatlon size. High recomblnatlon.rat(.e and populatlpn size
! _ g _ . , CEEE—=——= ==== EE== 2“ ° s s e s o s —— impose clear limitations on locus length for obtaining an accurate gene tree. Longer loci have a greater chance to contain different evolutionary
parameters varied broadly and centered around values matching human history. All é;;ft;;é = —Z;E EZ_ - e ==== E=E=E=== =5 e histories. As a result, the single estimated gene tree no longer reflects the evolutionary history of the whole locus. With a high recombination rate
other parameters were assigned as default. Simulations replicated each unique ;_ EEZEE E—E:E = == ° § =§§EEEE§ :EEEE === EEEC? this issue negatively impacts accuracy more than increasing genetic signal positively impacts accuracy. For regions of low substitution rate and high
combination of parameters 20 times. # =EE:im5ca.mg:a:::::efau.ié;’u'm‘;°n)' T o - e e e B - e recombination rate or population size, there is no locus length which returns an accurate gene tree. The optimal locus length to choose depends on
Jukes Cantor was chosen as the model of nucleotide substitution to simulate DNA K ———————— =ESESEE === 2 _== the location in parameter space.
sequences with differing substitution rates. Each contiguous gene tree output from ARG Like RF for 10000 BP c s T mmm——— - 60 Within the partitioning schemes for ML methods, dividing on c-genes (first strategy) performs the best for regions in which ML methods are better
msprime represents a recombination-free history for a program, Seg-gen, to simulate S — e 5 é e s =EESSSSSs === = than the ARG methods (regions with high sub and low pop and rec). These regions have long c-genes, so there is enough genetic signal within each
for a length of base pairs [6]. These contiguous simulated lengths concatenate ;;f? _ ;;: 5% @ o e e e e e s s e S ENEmm= ====;:=== c-gene and d|V|d|ng.on c-genes ensures there is no mixing of dlscqrdant hlstorl.es. Partltlonlng.on estl.mated c-genes (third stra.teg.y) does not
together to form the overall alignment with many (possibly) different genealogies. :z: EE: %E;— Eg’“’ > e —— e ===== = ” p(?rform well. In rgglgns wher(? the strajcegy COl..I|d perform Yvell Tsinfer overestimates breakpoints; this leads ’Fo a lack of genetic s.lgnal due to short
The accuracy of the following programs were compared. A standard maximum = E::: = f::; ;‘EEEEEEEEE e e e s s s s — allgnmef\ts. S.ubd|V|d|r1g t.he alighment mt.o |O.CI of various sizes (seconql stra.tegy) works betctfer.than the ARG I.|ke methods for regions of parameter
likelihood method, FastTree 2 [7], was used on 3 alignment partition strategies: c- EEEEE ——= 55%2 i EE==== space with high substitution, low recombination rate, and low population size. However, dividing on c-genes is still more accurate for the same
el g - _ g P _ sles: 7 igEEsES== === - _===5= S — —— regions of parameter space. For regions with high substitution rate, high recombination rate and high population size, creating gene trees from
genes (recombination free region), estimated c-genes, and subsampled alignments. E SEEesE=== ~ _ _=== - ==EE_ B EE——— _____:== 2o small partitions outperforms all other methods. Gene trees estimated from loci of size, 1250, 625, and 312 from this region of parameter space are
Three programs which estimate whole genome histories, by simultaneously inferring Jg— ;;;;;:__ == ) S EEEE_ more robust to recombination due to the small locus size, yet if the substitution rate is high enough a reasonable tree can still be reconstructed. C-
gene trees and recombination breakpoints: Relate, Tsinfer, Rent+ [8][9][10]. :__ ;:__ === = e e e e gene size for this region is too small; it does not contain enough genetic signal to estimate an accurate gene tree.
; —-SEEEm= mms=—=cu— - ¢ e T e e Tsinfer is the best choice of obtaining accurate gene trees for an unspecified region of parameter space; it is the most accurate across much of
§—==§§:__ = § E=E=ss § - - 0 parameter space and does not perform poorly in any region of parameter space.
Res u ItS §E§§§:—_§f _:-;E ===_ 0 : ======== — =160 Although ARGL methods divide the given locus into different sections, they do not accurately capture the number of recombination breakpoints;
o Seog et G i ea—— — -39 therefore, ARGL methods still break the assumption of no intra locus recombination but to a lesser degree. Simulated breakpoints might not
o eo ' 40 10 ' obs oo 2 change the gene tree, change the branch lengths, or change the topology; this makes accurately determining the location and number of
Average Simulated C-Gene Length C-Gene RF Population Scaling Parameter * (Default Human) recombination breakpoints a challenging problem. This simulation study shows that too many differing histories concatenated into a single locus

Figure 5. Ability of ARG methods to infer accurate gene trees. Boxes indicate Robinson Foulds distance between simulated MS trees and gene trees will cause serious problems for a standard ML method like Fast Tree 2. However, trying to uphold the assumption of no intra |ocus recombination is

estimated by the ARG methods for 1000, 10000, and 100000 base pairs. There is variability between the performance of the methods across parameter also not currently feasible. The problem each recombination event presents falls on a spectrum. If the evolutionary histories combined during a
space. In particular Tsinfer seems to be much more robust to changing parameters while still obtaining accurate gene trees for regions of “favorable” recombination event are the same, the evolutionary history of the whole sequence is still the same; detecting this event and modeling it has no
parameter space. Gray boxes represent regions when less than 6 out of 20 replicates succeeded. impact. If a recombination event combines two histories which are almost identical but have slightly differing branch lengths, how important is it to

: i i ?
K The ability to estimate gene trees accurately varied widely across the broad parameter space explored in this study. Although some of the ARGL methods identify and model separately:

| were fairly robust, producing accurate gene trees over a large proportion of parameter space, other approaches could only produce accurate gene trees in a Itis p955|ble the ABG like methods are in fact |d§nt|fy|ng recombination spots wher.e the history of jche ’Frees S|gr1|f|cantly cha nges.. This would
: explain why the Tsinfer seems robust to recombination although the number of estimated breakpoints is very different from the simulated number

———— e narrow window of parameter space. The location of parameter space determines which methods or strategies are optimal.

The accuracy splitting an alignment into C-Genes performs best for regions of parameter space with higher substitution rates, lower recombination rates, of breakpoints (Figure 6). More work needs to be done to verify if this is the case.

: ) and smaller population sizes. This strategy works provided there is enough genetic signal. References
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