Hydrodynamics of a Multicomponent Vesicle Under Strong Confinement
Ashley Gannon, Yuan-Nan Young (NJIT), and Bryan Quaife
Department of Scientific Computing, Florida State University

Abstract
The biophysical lipid bilayer membrane (such as a vesicle) often consists of multiple species of macromolecules such as cholesterol, surface proteins, surfactants, and different lipids. I use the phase-field model for a multicomponent lipid membrane and implement the hydrodynamics with a boundary integral code. The simulations covered in this poster show that the multicomponent structure results in fundamentally different behaviors than a single component vesicle.

Introduction

What is a Vesicle?
Vesicles are deformable (2D) capsules that:
• are submerged in and filled with an incompressible viscous fluid
• are governed by hydrodynamic interactions with walls, resistances to bending (with lipid-dependent modulus), and the inextensibility condition
• have multi-component phase separated membranes.
• are proxies for many biological cells, such as red blood cells.

Hydrodynamic Model

Fluid Equations
\[
\begin{align*}
\rho \frac{D\mathbf{v}}{Dt} & = -\nabla P - \nabla \sigma - \mathbf{f}, \\
\frac{D\mathbf{v}}{Dt} & = 0, \\
\mathbf{T} & = \mathbf{T}_L - \frac{1}{2}(\nabla \mathbf{v} + \nabla \mathbf{v}^T), \\
\nabla \cdot \mathbf{v} & = 0.
\end{align*}
\]

Cons. momentum, Cons. mass, Continuity, Force balance, Stress tensor.

Phase Energy
\[
E_p = \frac{1}{2} \int (f(u) + \frac{\kappa}{2} \nabla u^2) ds
\]

Membrane Forces
\[
\begin{align*}
\mathbf{f}_p & = \left(\mathbf{f}_p - \frac{1}{2} \mathbf{f}_v \right), \\
\mathbf{f}_v & = \left(\mathbf{f}_v - \frac{1}{2} \mathbf{f}_p \right), \\
\mathbf{f}_b & = \frac{1}{2} \mathbf{f}_p - \frac{1}{2} \mathbf{f}_v.
\end{align*}
\]

Model Features
• Lipid species phase separate
• Total lipid mass is conserved
• Bending modulus remains bounded between \(b_{\text{min}} \) and \(b_{\text{max}} \).

Shape of Multicomponent Vesicles

Figure 1: The fluid domain with boundary \(\Omega \) and \(\Omega \) is the vesicle membrane. In addition to the vesicle-induced flow, a Poiseuille flow is imposed at the inlet and outlet.

Figure 2: Under strong confinement, the lipid species concentration exceeds \(1 \) or falls below \(0 \) since the double well potential does not have hard boundaries. This is problematic for the linear bending modulus since it leads to an unphysical negative bending stiffness. Even though the shape stabilizes, this leads to a drastic increase in the error.

Figure 3: Membrane bending (blue), tension (green), and phase (red) energies. As the vesicle enters the channel, the tension increases by \(3 \) orders of magnitude and dominates the membrane energy until the vesicle exits the channel. Once the vesicle exits the channel, the tension decreases along with the phase energy (phase separation), and the bending energy decreases as the vesicle relaxes.

Figure 4: At low flow rates \(\Phi_{\text{flow}} = 0.5 \mu \text{m}/\text{s} \) the multicomponent vesicles and single-component vesicles have vastly different shapes.

Figure 5: Location vs. time for two different reduced areas and single- vs. multicomponent vesicles. The multi-component vesicles move through the channel quicker than their single-component counter parts.

Conclusions
• Vesicles in strong confinement experience strong deformations that result in phenomena, such as permeability [2], that many models ignore.
• A new bending model guarantees the bending modulus is bounded between \(b_{\text{min}} \) and \(b_{\text{max}} \).
• In a closely-fitting channel, lipid species phase separation occurs slower than in the wider regions since the membrane tension dominates the dynamics.
• For small flow rates, a multicomponent vesicle’s shape is different than a single-component vesicle’s shape.
• Multicomponent vesicles move through the closely fitting channel quicker than the single-component vesicles.
• Future direction includes investigating long time transient behavior such as tank treading and phase treading [1].

References