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Objectives

Develop surrogate models (SMs) to emulate the
input-output relationship of the molecular models
(m) of polymer viscoelasticity (h), while requir-
ing significantly less computational resources than
m. Developed surrogate can be used for polymer
design and characterisation under inverse problem
setting. We machine-learn the SMs using Gaus-
sian process (GP). Figure 1 illustrate the basis
paradigm followed in this work.

Figure 1: (a) Run the molecular model to gather the
training data. (b) Build the surrogate model. (c) Use
the trained surrogate to solve the inverse problem.

Sparse Vector-Valued Data

Figure 2: Physics based molecular models (TDD-DR
and ecoSLM) used to generate vector-valued data.
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Figure 4: The dataset used in study: LLB (linear-
linear polymer) and SLB(star-linear polymer).

Sparse : Dataset size is ∼ 102 samples.

Results-LLB
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Figure 4: The predicted means (lines) and 95% confi-
dence intervals (shaded regions) using GPsep (green),
KLGP (orange) and BSGP (red) are compared with
the true RS (dashed black line). The predicted mean
is also shown for KLNN and BSNN. The two columns
correspond to two different test points. KLGP offers
the most calibrated confidence intervals. They reflects
greater uncertainty in interesting regions relative to
the smoother regions.

ntrain = 101
RMSE (KLGP) (2.95 ± 0.10) × 10−3

RMSE (GPsep) (2.93 ± 0.13) × 10−3

RMSE (BSGP) (3.86 ± 0.14) × 10−3

RMSE (BSNN) (9.79 ± 0.27) × 10−3

RMSE (KLNN) (6.14 ± 0.27) × 10−3

- ntrain = 200
RMSE (KLGP) (1.98 ± 0.08) × 10−3

RMSE (GPsep) (2.13 ± 0.09) × 10−3

RMSE (BSGP) (2.84 ± 0.12) × 10−3

RMSE (BSNN) (9.60 ± 0.23) × 10−3

RMSE (KLNN) (6.67 ± 0.15) × 10−3

Table 1: Average RMSE for test data using different
SMs for the LLB dataset. ntrain is training dataset
size, and ntest = 249. Among GP-based SMs, KLGP
performs relatively better (although statistical confi-
dence is weak). All GP-based methods outperform
the NN-based method with statistical significance.

Results-SLB
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Figure 5: The predicted mean and 95% confidence
intervals for GPsep and KLGP at four different test
points are compared with the true RS (dashed black
line). In the top row the location in height of the
peak(s) are captured. In the bottom row, either loca-
tion or height is captured as noted, but not both.

GPsep (7.68 ± 1.42) × 10−2

KLGP (7.01 ± 1.80) × 10−2

BSGP (6.25 ± 1.55) × 10−2

KLNN (9.81 ± 1.88) × 10−2

BSNN (8.53 ± 1.65) × 10−2

Table 2: Average RMSE for SLB test data using dif-
ferent SMs. ntest = 16.

prediction KLGP GPsep BSGP
quality nsp sp nsp sp nsp sp
good 9 - 4 - 9 -
fair - 2 3 2 1 3
bad 3 2 5 2 2 1

prediction KLNN BSNN
quality nsp sp nsp sp
good 1 - - -
fair 4 - 4 -
bad 7 4 8 4

Table 3: Qualitative assessment of different SM on a
SLB test dataset with ntest = 16 samples. sp and nsp
denote the presence or absence of sharp peaks in the
test RSFuture Research

The surrogate model struggled with sharp peaks
in the data. Consider exploring wavelet-based
methods, which can adapt to such features. Ex-
plore B-spline methods that efficiently select node
positions for bases. Additionally, explore neural
network-based approaches for potential SMs.
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Gaussian Processes (GPs)

Gaussian process is a non-parametric non-linear
regression/classification technique with built-in
uncertainty quantification. In GP, any collection
of random variable is specified by a Gaussian dis-
tribution. GP is specified by its mean µ(x) and
kernel k(x, x′). The GP f(x) is represented as,

f(x) ∼ N (µ(x) = 0, k(x, x′)). (1)
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Figure 2: The figure shows a GP f(x) fitted on input
data (blue dots). The solid black line represents the
predicted mean, and the shaded region indicates an
interval of uncertainty around this mean. The red lines
show five samples drawn from this GP.

Surrogate Models (SMs)

Figure 5: Using reduce order modelling h(s) is pro-
jected onto a lower-dimensional space Ω. The coeffi-
cients obtained from this projection act as inputs for a
GP based surrogate. When a test point x∗ is provided,
the SM regress the corresponding coefficients and then
converts them back to the initial space h∗(s).

GP based surrogates:
1. KLGP: GPR based on KL-expansion basis.
2. BSGP: GPR based on B-spline basis.
3. GPsep: GPR assuming a separable kernel.

The co-variance between two points x and
x′, and at grid (s) index i and j is simplified
to: k(x,x′)ij = ks(i, j) · kx(x,x′)

Neural Network (MLP) based surrogates:
1. KLNN: NN based on KL expansion basis.
2. BSNN: NN based on B-spline basis.


