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Introduction

Numerical models of the Gulf of Mexico (GoM) are crucial for various
sectors due to the significant impact of GoM Loop Current (LC) and
Loop Current Eddies (LCE) on climate, fisheries, and hurricane pre-
diction. While the LC facilitates heat transport and features strong
currents, LCEs influence oil and gas operations and hurricane intensity.
Despite advancements in modeling, the sparseness of in situ data limits
accurate subsurface circulation forecast.

Satellite data aids surface-level modeling, but subsurface measure-
ments, mainly from the Argo program and specialized floats like LC-
floats and UGOS 3, are very sparse, affecting mesoscale circulation ac-
curacy. Techniques like Gravest Empirical Modes (GEM) and Improved
Synthetic Ocean Profile (ISOP) generate synthetic profiles to enhance
models, yet issues such as computational demand, accuracy and linear
limitations persist.

Machine learning (ML) has shown promise in the GoM for various
applications, from predicting LCE events to estimating carbon dioxide
variations. Specifically, convolutional neural networks (CNNs) using
satellite data have been explored for three-dimensional salinity field re-
construction. We introduce NeSPReSO, a method leveraging ML to
estimate subsurface profiles using satellite and Argo data, aiming to
improve computational efficiency and model accuracy. We investigate
NeSPReSO’s effectiveness against traditional methods and its potential
for operational model integration.

Data
This study utilizes a mix of in situ and satellite data, the Argo float
dataset is composed of 4,145 T and S profiles from 2015-2022 in the
GoM, providing measurements up to 1,800 meters. For satellite data, we
use Absolute Dynamic Topography (ADT) from CMEMS, Sea Surface
Temperature (SST) from OISST, and Sea Surface Salinity (SSS) from
SMAP as input parameters for our model. These datasets, with daily
resolutions and fine spatial granularity, were interpolated to match the
Argo and glider data points. ADT adjustments (subtracted the mean
in the GoM) were made to account for seasonal upper ocean thermal
expansion and contraction. Glider data from four missions targeting
mesoscale structures are also used to validate our model. These have
a vertical resolution of 5m. Figure 1 shows the T-S diagram of the
dataset and highlights the core of the main water masses in the region:
Gulf Common water (GCW), North Atlantic Subtropical Underwater
(NASUW), and Sub-Antarctic Intermediate water (SAAIW), and the
location of the profiles. Principal Component Analysis (PCA) is per-
formed on this dataset, and the Principal Component Scores (PCS) are
used to train and validate our model.

Figure 1: Temperature-Salinity diagram (left) and Spatial distribution (right) of
the Argo profiles used in this study. The core of the Gulf Common water (GCW),
North Atlantic Subtropical Underwater (NASUW) and Sub-Antarctic Intermediate
water (SAAIW) are marked for reference.

PCA

We use PCA dimensionality reduction. We computing the covariance
matrix S from the centered data matrix Y:
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Then solve for eigenvectors V and eigenvalues D in SV = DV.
Projecting Y onto V yields the PCS:

Z = YV (1)

We can reconstruct the approximated data with Ŷ = ZVT . To reduce
dimensionality, V and Z can be truncated, keeping only the indices
corresponding to the largest eigenvalues.
We apply PCA to T and S datasets separately, reducing from 1801 to 15
variables for each, and retaining significant variance (99.8% for T and
99.4% for S). The neural network is trained to predict these 30 PCS
for each profile in the Argo dataset, allowing for efficient training and
reconstruction.

NN Architecture

Let X ⊂ RdX be our input space (possible surface measurements) and Y ⊂ RdY the output space (possible vertical profiles). Our ultimate goal
is to find a mapping operator Φ : X → Y that for all measurement vectors x ∈ X, there exists a corresponding T and S profile y ∈ Y such that
y = Φ(x).
Suppose the output space Y can be encoded into a space Z ⊂ RdZ , where dZ ≤ dY , using an encoder EY , and reconstructed with a decoder DY ,
such that y ≈ EY (z) when z = DY (y), for all z ∈ Z.
Given a collection of inputs from X with corresponding profiles from Y , applying empirical PCA on these profiles yields the principal components
(encodings) z and defines a decoder operator DPCA(z) = zVT , where V is the eigenvector matrix calculated by the empirical PCA. In this
framework, the encoder ξ : X → Z emerges, a transformation that compresses the input space X into the reduced PCA space Z, capturing the
essential features of the available data. We approximate this encoding process ξ with a neural network ζ. The loss function L combines weighted root
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Figure 2: General diagram of our methodology. Step 1 computes the empirical PCA of the ARGO database. Step 2 trains a multilayer perceptron (MLP) from interpolated
SST, SSH and SSS satellite observations, and harmonics of latitude, longitude and day of the year to predict the 15 Principal Component Scores (PCS) of T and S, which
represent over 99% of the variance of the original data. Step 3 reconstruct the profiles via the inverse PCA operation. The MLP consists of 2 fully connected layers with 512
neurons, ReLU activation, and a 20% dropout rate. Inputs include interpolated SSH, SST, and SSS data, and the output approximates PCS for temperature and salinity
profile reconstruction. Training uses 70% of the profiles, validation 15%, and testing the remaining 15%. The training process involves up to 8000 epochs, a batch size of
300, and early stopping based on validation loss improvement.

Results

We analyze the performance of NeSPReSO with respect to the 621 Argo profiles in our test set (not used in training), and compare its performance
against GEM and ISOP methods. ISOP utilized profile-derived ADT and SST, unlike the other methods which use satellite data. This distinction
favors ISOP in the upper ocean.

Figure 3: Average temperature and salinity RMSE and bias per depth.
NeSPReSO outperforms GEM in temperature prediction across all depths
and ISOP below 30 meters. While direct surface comparisons with ISOP
are challenging due to its use of Argo SST, NeSPReSO provides more ac-
curate temperature profiles, likely due to satellite SST usage. All methods
show comparable temperature bias, indicating similar systematic errors.
For salinity, NeSPReSO shows lower RMSE and bias across most depths,
highlighting its superior accuracy in salinity prediction.

Temperature Salinity
Crossing RMSE Bias R2 RMSE Bias R2

Poseidon 1 0.586 0.031 0.996 0.118 -0.011 0.982
Poseidon 2 0.553 -0.207 0.998 0.111 -0.035 0.986
Campeche 0.524 0.079 0.996 0.069 0.017 0.992

Intense LCE 0.730 -0.133 0.996 0.105 -0.047 0.991

Table 1: RMSE, bias and R2 between observations and synthetics across
mesoscale eddy crossings. RMSE and bias values agree with the ARGO
statistics for the same depth range, and R2 is similar to the variance cap-
tured by the PCA.

Figure 4: Spatial distribution of RMSE and bias for T and S, calculated using predictions
at the same depths as ISOP for a fair comparison. NeSPReSO displays a lower overall
RMSE for both T and S predictions for most regions across the GoM. NeSPReSO appears
to have no predominant bias, and magnitudes comparable to the other methods or better.
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Conclusion and future work

This work highlights ML’s skill to synthesize temperature and salinity profiles from surface ocean data. Using PCA and NN, our model produces
a better representation of the temperature and salinity profiles in the Gulf of Mexico compared to GEM and ISOP.
These results raises several questions that warrant further investigation. For instance, how will NeSPReSO perform in different oceanic regions with
distinct hydrodynamic and thermohaline characteristics, and what adaptations might be required for different regional applications? Also, how
can NeSPReSO be adapted and trained to effectively generate accurate temperature and salinity profiles in oceanic regions with depths shallower
than the model’s current maximum depth range? Future work will focus on addressing these questions, and improve further.


