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Oscillatory Shear Rheology
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The component of 𝜎(𝑡) in-phase (out of phase) with 𝛾(𝑡) describes 

the elastic (viscous) nature of the material

Fourier 
Series

A constitutive model (CM) is a set of mathematical equations that 

describe the relation between the extra stress tensor 𝝈 and strain 𝛾.

We propose the use of a fast and spectrally accurate method to 

solve nonlinear CMs under OS flow called Harmonic balance

Experiment Constitutive 
Theories

Model Calibration and 
Model Selection

❑Physical interpretation of experimental data 

through Fourier coefficients is not 

straightforward

❑There is a need to use Constitutive theories 

for OS analysis

❑Analytical OS solutions are not available for 

a majority of nonlinear differential  CMs. 

❑The conventional approach of using 

numerical integration (NI) is slow.

Harmonic Balance
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Symbol Description

De = 𝜆ω Deborah number

Wi = 𝜆𝜔𝛾0 Weissenberg number

𝒓 Residual term

𝒒 Unknown variables

𝑩 Set of basis functions 

(Sine-cosine or 

exponential)

𝐻 No. of harmonics

ො𝒓, ෝ𝒒 Set of Fourier 

coefficient of 𝑟 and 𝑞
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Take Fourier transform of each of the terms to 
get the HB equation system
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Harmonic balance (HB) is used for nonlinear vibration problems where long-time 

the response to an oscillatory input is also oscillatory or a periodic steady state .

For many systems (PTT and TNM ) direct 

transformation of the time domain ODEs to 

the frequency domain is not possible. We use 

an alternate mechanism
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The CMM has an analytical solution 

(AS) reported in the literature. The 

solution is an infinite Fourier series 

containing Bessel functions. We 

compare this AS with the HB solution.  

HB leads to a tridiagonal linear system.

For 𝐻 = 1

HB solution agrees well with the 

AS and has a comparable 

convergence rate but, it is much 

faster. =
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Summary and Conclusions
✓Harmonic Balance converts the time domain initial value problem to a

frequency domain optimization problem

✓For linear CMs such as the Corotational maxwell model, the HB

formulation leads to a linear system of equations. HB solution turns out

to be more efficient than the available analytical solution

✓For CMs with polynomial terms such as the Giesekus model 𝝈 ⋅ 𝝈 , a

system of algebraic equations is obtained which can be solved with any

standard nonlinear solver

✓For all other CMs with arbitrary nonlinearity, the AFT scheme is coupled

to the nonlinear solver that oscillates back and forth in time and

frequency domain to map the nonlinear terms

✓HB outperforms NI both in terms of CPU time and accuracy

✓HB facilitates further theoretical studies on constitutive models

subjected to LAOS flows
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Accuracy and Convergence Further Theoretical Studies

Plot given by Saengow and 

Giacomin using analytical solution
Plot obtained using Harmonic Balance

Thermodynamic Study

As per the Ziegler criterion proposed by Saengow

and Giacomin, a system subjected to OS flow  is 

said to be thermodynamically unstable if 𝑍 > 0

Z = −
𝜕 log G1

′′

𝜕 log γ0
− 1

Corotational 
Maxwell model

Such theoretical studies can be carried out on any nonlinear constitutive 

model with/without an analytical solution at a much lower CPU cost. 

Mathematical Instabillity
HB implemented on the Giesekus model by using two different initial conditions. 

It is compared  with the corresponding result from numerical integration.

HB facilitates study of 

mathematically 

unstable solutions by 

simply tweaking the 

initial guess values to 

the HB algorithm. This 

is not possible with NI. 
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To implement HB on other nonlinear differential CMs, a HB+AFT scheme is 

used. By simply changing the nonlinear term 𝒇𝑛𝑙 we can get oscillatory shear 

responses of any CM. We define a general form for any nonlinear CM

PTT 
𝜁 = 0,𝐻 𝝈 = exp 𝜀 tr 𝝈 𝝈,

𝐽 𝝈 = 0

TNM

𝜁 = 0,𝐻 𝝈 = 𝑑 𝑡 𝝈,

𝐽 𝝈 = − 𝑐 𝑡 − 𝑑 𝑡

𝑐 𝑡 = 𝑒𝑎 𝜎12 , 𝑑 𝑡 = 𝑒𝑏 𝜎12

PTT TNM

HB solution 

agrees well with  

Ni and AS and is 

faster, more 

accurate, and 

shows 

exponential 

convergence. 

HB outperforms NI for the PTT model. However, both HB and Ni 

struggle with the TNM due to presence of non-analytic terms (𝑐 , 𝑑)
as Fourier series perform poorly near sharp cusps. The 

convergence to the true solution is also sluggish for the TNM.

The AFT scheme can be used to 

implement HB on any differential 

constitutive model with any nonlinearity


