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Abstract
An energy functional describes the equilibrium state of a

system. In this work, we present a novel technique, Functi-
onal Optimization using Neural Networks (FONN), for mini-
mizing the system’s energy. FONN utilizes neural networks
to process information at discrete grid points, considering
their interactions with neighboring grid points, to update the
state of the system. The training process involves formula-
ting a loss function based on the system’s energy, and with
the help of multiple fine-tuning steps, the method employs a
progressive energy reduction technique that decreases the
energy in multiple steps. FONN’s effectiveness is demons-
trated across various problems, including the minimization
of the heat and Lyapunov energy.

Introduction

0.1 Energy Functional
It takes a function and maps the function to a non-

negative real number. It is denoted as

E(ϕ) =

∫
Ω
f (ϕ(x),∇ϕ(x)) dx ≥ 0, (1)

where x : Ω ⊂ Rd, ϕ : Ω → R.
For example,

f (ϕ,∇ϕ) = 1

2
|∇ϕ|2 (2)

We may solve the minimization problem by changing the
energy functional into a PDE, i.e.,

∂ϕ

∂t
= ∆ϕ (3)

0.2 Graph Neural Networks
For a graph G = ⟨O,R⟩, where O represents the nodes

and R represents their relations,

Gn+1 = GNN(Gn), (4)

where n denotes the state of the graph. For example,
O = {oi} i = 1, 2, 3
R = {rj} j = 1, 2
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fR: Relation-centric function
→ computes the interaction

between two nodes
→ is a trainable neural network
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fO: Object-centric function
→ updates the state of an object
→ is a trainable neural network
fO(o

n
1 , 0) = on+11
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In general,
• fR(onaj, o

n
bj
, rj) = enj , j = 1, 2, . . . |R|

→ onaj and onbj are the sender and the receiver of the rela-
tion rj
→ enj is the effect of interaction between the two objects.

• fO(oni ,
∑
k∈Nk

enk) = on+1i , i = 1, 2, . . . |O|
→ Nk denotes the total number of the relations for which
the node oni is the receiver
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0.3 Discretization

Figura 1: Regular Grid

We employ the idea of GNN to the regular grid. The object-

centric and the relation-centric function can be formulated
as
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i,j−1) = emi,j,i,j−1, (7)

fR(ϕ
n
i,j+1, ϕ

n
i,j, ψ

m−1
i,j+1, ψ

m−1
i,j ) = emi,j+1,i,j. (8)

The combined interacting effect is given by

ci,j = emi,j,i−1,j − emi+1,j,i,j + emi,j,i,j−1 − emi,j+1,i,j. (9)

Finally,
fO(ϕ

n
i,j, ci,j) = ψmi,j. (10)

With ψmi,j, we can implement a recursive algorithm that al-
lows the information to pass beyond the pairwise interac-
tion.
0.4 Loss Function and Training

The training process involves a loss function defined
using the energy functional and the change between the
input and the output states.

L(ϕin, ϕout) =

 1

NxNy

Nx∑
i=1

Ny∑
j=1

(ϕouti,j − ϕini,j)
2

 + ω
Eout

Ein
, (11)

→ Nx is the number of grid points along the x-axis
→ Ny is the number of grid points along the y-axis
→ ϕin and ϕout are input and output of the network
→ E denotes the energy
→ ω is the weight parameter
Initially, we train the networks fR and fO to learn the map-
ping of the initial state of the system (ϕ0 → ϕ0) using the
mean squared error. During this initial training, the Gaus-
sian noise (X) with mean (µ) = 0 and a small standard
deviation (σ) is added to the initial state at each iteration,
enhancing the robustness of the initial mapping. Once the
initial training is complete, the networks are fine-tuned for a
few iterations (K) with the given loss function L (11). This
process helps the networks to learn a mapping that not only
keeps the output near the input but also achieves a lower
energy state. With this fine-tuned network we obtain an up-
dated state of the system. Using this new state, the network
is again fine-tuned to get a subsequent state of the system.
We continue this iterative process of energy reduction until
the termination criterion is met.
• Initial Training (ω = 0)

FONNϕ0 ϕ0

• Subsequent Training (ω ̸= 0)

FONNϕ0 ϕ1

FONNϕ1 ϕ2

...
FONNϕn ϕn+1

Numerical Experiments

0.5 Example 1: Heat Equation
Energy Functional:

E(ϕ) =
1

2

∫
Ω
|∇ϕ|2dx on (0, 1)2

Boundary Conditions:
• ϕ(x, 0) = 0

• ϕ(x, 1) = −x + 1

• ϕ(0, y) = sin(5πy/2)

• ϕ(1, y) = −4(y − 1/2)2 + 1

In the experiment, we have noticed that using a single
step for the optimization does not yield satisfactory results.
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Figura 3: Optimization of the energy functional with a sin-
gle step.

Using our method, the system gets to the mi-

nimum of the energy functional. Moreover, it in-
corporates the boundary condition into the domain.
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Figura 5: Optimization of the energy functional using
FONN.

0.6 Example 2: Lyapunov Energy
Energy Functional:

E(ϕ) =

∫
Ω

(
1

2
|∇ϕ|2 + 1

ϵ2
F (ϕ)

)
dx, (12)

where F (ϕ) = 1
4(ϕ

2 − 1)2.

Boundary condition: periodic

Initial state: sin(4πx)cos(4πy) on [0, 1]2

Figura 6: Initial Condition

Figura 7: Minimum of the energy functional
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Figura 8: Performance of the method for different values of
the weight parameter, ω

Conclusion
In this paper, we developed a novel FONN method to mi-

nimize energy functional using neural networks. The pro-
posed method is described with a network architecture to
work on a regular grid and a loss function based on the
energy functional. In addition, a progressive energy reduc-
tion technique to decrease energy in multiple steps is esta-
blished. Several numerical experiments for a wide variety
of problems demonstrated the ability of the FONN method
for energy minimization.
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