
FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

CONTACT-FREE SIMULATIONS OF RIGID PARTICLE SUSPENSIONS USING

BOUNDARY INTEGRAL EQUATIONS

By

LUKAS BYSTRICKY

A Dissertation submitted to the
Department of Scientific Computing

in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

2018

Copyright © 2018 Lukas Bystricky. All Rights Reserved.



Lukas Bystricky defended this dissertation on July 16th, 2018.
The members of the supervisory committee were:

Bryan Quaife

Professor Co-Directing Dissertation

Sachin Shanbhag

Professor Co-Directing Dissertation

Nick Cogan

University Representative

Chen Huang

Committee Member

Nick Moore

Committee Member

The Graduate School has verified and approved the above-named committee members, and certifies
that the dissertation has been approved in accordance with university requirements.

ii



TABLE OF CONTENTS

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction 1
1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Stokes Equations 9
2.1 Fluid Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Rigid Body Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Integral Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Fredholm Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Exterior Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Interior Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.4 Boundary Integral Formulation of Rigid Body Suspensions . . . . . . . . . . 27
2.3.5 Computing Pressure and Stresses . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Numerical Methods 31
3.1 Spatial Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Discretization of Stokes Boundary Integral Equation . . . . . . . . . . . . . . . . . . 34

3.2.1 Interior Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.2 Exterior Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.3 Multiply-Connected Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Near Singular Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Solving the Linear System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5 Time Stepping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.1 Locally Implicit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6.1 Jeffery Orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.6.2 Multiple Bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.6.3 Rotors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Resolving Contact 58
4.1 Description and Properties of Complementarity Problems . . . . . . . . . . . . . . . 58
4.2 Solution Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1 Linear Complementarity Problems . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.2 Nonlinear Complementarity Problems . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Variational Stokes Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4 Space-Time Interference Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

iii



4.5 The Boundary Integral Formulation as a NCP . . . . . . . . . . . . . . . . . . . . . . 67

5 Results 71
5.1 Shear Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 Taylor-Green . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3 Fluid Driven Deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4 Taylor-Couette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Conclusion 84
6.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2.1 Three-dimensional Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2.2 Periodic Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Appendix

A Index Notation 89
A.1 Einstein Summation Convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.2 Special Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Biographical Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

iv



LIST OF TABLES

3.1 Convergence of the trapezoid rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Errors using the trapezoid rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Convergence study of multiple fibers in shear flow . . . . . . . . . . . . . . . . . . . . 54

3.4 Time comparison of multiple fibers in shear flow without using FMM . . . . . . . . . 54

3.5 Time comparison of multiple fibers in shear flow using FMM . . . . . . . . . . . . . . 55

4.1 Number of possible solutions for a one-dimensional complementarity problem . . . . . 59

5.1 Demonstration of the breaking of reversibility after repulsion forces added . . . . . . . 74

5.2 Time averaged order parameter in a Couette apparatus . . . . . . . . . . . . . . . . . 82

5.3 Time averaged effective viscosity in a Couette apparatus . . . . . . . . . . . . . . . . . 82

v



LIST OF FIGURES

1.1 Sketch of the orientation vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Sketch of an unbounded domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Velocity fields of a Stokeslet and a rotlet . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Sketch of a simply connected interior domain . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Sketch of a multiply connected domain . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Problem that requires near singular integration. . . . . . . . . . . . . . . . . . . . . . 41

3.2 Near singular integration scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Convergence of the near singular integration scheme. . . . . . . . . . . . . . . . . . . . 43

3.4 Eigenvalue clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Singular values of blocks in linear system . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6 Test setup for preconditioner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.7 Eigenvalues of preconditioned and unpreconditioned linear system . . . . . . . . . . . 49

3.8 Values of supz∈Λ(A) |p(z)| vs n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.9 Numerical simulation of a Jeffery orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.10 Parameterization of rigid bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.11 Snapshots of fibers in a shear flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.12 Code scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.13 Rotor simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 One-dimensional complementarity problems . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Collision resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 Displacement caused in a shear flow experiment as a function of minimum separation
distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Crossing of streamlines after application of repulsion forces . . . . . . . . . . . . . . . 75

5.3 Snapshots of particles suspended in a Taylor-Green flow . . . . . . . . . . . . . . . . . 76

vi



5.4 Sketch of the geometry for a confined monolayer suspension . . . . . . . . . . . . . . . 77

5.5 Snapshots of a confined monolayer suspension . . . . . . . . . . . . . . . . . . . . . . . 78

5.6 Shear strain rate for a confined monolayer suspension . . . . . . . . . . . . . . . . . . 79

5.7 Initial fiber configurations inside a Couette apparatus . . . . . . . . . . . . . . . . . . 80

5.8 Simulated order parameters for fibers inside a Couette apparatus . . . . . . . . . . . . 81

5.9 Simulated bulk viscosity for a Couette apparatus . . . . . . . . . . . . . . . . . . . . . 83

6.1 Sketch of the Lees-Edwards boundary condition . . . . . . . . . . . . . . . . . . . . . 87

6.2 Enforcement of the Lees-Edwards boundary conditions . . . . . . . . . . . . . . . . . . 88

vii



ABSTRACT

In many composite materials, rigid fibers are distributed throughout the material to tune the

mechanical, thermal, and electric properties of the composite. The orientation and distribution of

the fibers play a critical role in the properties of the composite. Many composites are processed

as a liquid molten suspension of fibers and then solidified, holding the fibers in place. Once the

fiber orientations are known, theoretical models exist that can predict properties of the composite.

Modeling the suspended fibers in the liquid state is important because their ultimate configuration

depends strongly on the flow history during the molten processing.

Continuum models, such as the Folgar-Tucker model, predict the evolution of the fibers’ orien-

tation in a fluid. These models are limited in several ways. First, they require empirical constants

and closure relations that must be determined a priori, either by experiments or detailed computer

simulations. Second, they assume that all the fibers are slender bodies of uniform length. Lastly,

these methods break down for concentrated suspensions. For these reasons, it is desirable in cer-

tain situations to model the movement of individual fibers explicitly. This dissertation builds upon

recent advances in boundary integral equations to develop a robust, accurate, and stable method

that simulates fibers of arbitrary shape in a planar flow.

In any method that explicitly models the individual fiber motion, care must be taken to ensure

numerical errors do not cause the fibers to overlap. To maintain fiber separation, a repulsion force

and torque are added when required. This repulsion force is free of tuning parameters and is deter-

mined by solving a sequence of linear complementarity problems to ensure that the configuration

does not have any overlap between fibers. Numerical experiments demonstrate the stability of the

method for concentrated suspensions.

viii



CHAPTER 1

INTRODUCTION

Many natural and man-made materials can be classified as particle suspensions. The occurrence

of suspensions spans many fields, including biofluids, foodstuff, and manufacturing processes. To

give three examples, blood is a suspension of platelets and red and white blood cells, mayonnaise

is a suspension of oil drops, and pulp used in paper manufacturing is a suspension of fibers [45].

In all of these examples, hydrodynamics plays a critical role. In particular, the particles are not

only carried by the flow, but affect the flow. This is different from suspensions involving granular

media, for example atmospheric pollutants, where the particle interactions are negligible, and do

not affect the flow. This dissertation focuses on viscous suspensions of non-deformable rigid bodies

such as fibers.

Rigid body suspensions in viscous fluids are important for manufacturing composite materials,

where rigid fibers are distributed throughout the material. The orientation and distribution of

these fibers can be used to tune the mechanical, thermal, or electrical properties of the composite.

For example, the composite is strongest in the direction of maximum fiber alignment, and weakest

in the direction of minimum fiber alignment [26]. Operations such as injection molding, extrusion,

or casting are used to process molten suspensions. The liquid suspension is then solidified, holding

the fibers in place. Once the fiber orientations are known, mathematical models can predict the

mechanical properties of the suspension [1]. Modeling the fibers in the liquid sate is important

because the distribution and orientation of the fibers depend strongly on the flow history of the

melt during processing. In addition, the rheological properties of the suspension, which govern

the flow, depend themselves on the suspended fibers. Thus there exists a relationship between the

particle distribution and orientations and the fluid flow.

The study of suspensions has a long history. In his 1906 Ph.D. thesis, Einstein [19] calculated

the effective viscosity of a dilute suspension of spherical particles in a fluid of viscosity µ. He found

that if the suspension is dilute enough so that hydrodynamic interactions play no role, the effective
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viscosity of the suspension is

µeff = µ(1 + 2.5φ),

where φ is the particle volume fraction. This relationship is only valid for very dilute suspensions,

those with φ < 0.05. For suspensions with a higher volume fraction, hydrodynamic interactions

between particles are important and higher-order terms in φ are needed to estimate the effective

viscosity. For an extensional flow, Batchelor [8] computed the extensional viscosity of a suspension

of spheres assuming pair interactions are dominant,

µeff = µ(1 + 2.5φ+ 6.95φ2).

Even in this relatively simple case, the shear viscosity of a suspension of spheres demonstrates

shear-thickening, a non-Newtonian behavior.

The contribution of non-spherical particles to the viscosity of a suspension is more complicated.

In a shear flow, for instance, non-spherical rigid bodies contribute less to the effective viscosity

when they are aligned with the flow direction. Thus their contribution is not static and their

dynamics must be considered. The motion of a single ellipsoid fiber in shear flow was analyzed by

Jeffery [35]. In R2, an ellipse with length ` and diameter d suspended in a shear flow with shear rate

γ̇ rotates with period (π/γ̇)(λ + λ−1), where λ is the aspect ratio `/d. The period of the “Jeffery

orbit” increases with λ, and the amount of time the fiber spends aligned with the flow direction

also increases with λ. Given suitable corrections, the trajectories of fibers of different elongated

shapes, such as cylinders, can also be described as Jeffery orbits.

The concentration of the fibers plays a critical role in the properties of rigid body suspension.

We quantify the concentration of a suspension of fibers by defining ν to be the average number of

fibers per unit volume. If ν < 1/`3, the suspension is in the dilute regime and interactions between

fibers are rare. In this case the fiber trajectories can be quantitatively described by Jeffery orbits.

Outside the dilute regime, interactions between fibers are more frequent and must be considered.

To define the orientation of a fiber, we assign to each fiber a unit vector p that points in the direction

of its semi-major axis (Figure 1.1). In the semi-dilute regime, 1/`3 < ν < 1/d`2, Batchelor related

the average stress tensor σ to the distribution of fiber orientations p and the rate of strain tensor

e = (∇u + (∇u)T )/2. Letting Ψ(p,x) be the probability of a fiber at location x being oriented in
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the direction p, we define the ensemble averages

aij =
∫
pipjΨ(p,x) dp, aijk`(x) =

∫
pipjpkp`Ψ(p,x) dp.

In the absence of Brownian motion and assuming purely hydrodynamic interactions between fibers

(i.e. no external forces and torques), and a slender body approximation (λ� 1), the stress tensor

can be approximated as

σij = 2µeij + νζaijk`ek`, (1.1)

where ζ is a drag coefficient that depends on the size and concentration of the fibers and the fluid

viscosity [8].

x

y

z

p

φ

θ

Figure 1.1: Sketch of the orientation vector p.

Computational simulations of fiber suspensions can be either implicit or explicit. Implicit

models treat the suspension as a continuum, while explicit models track each fiber individually. In

an implicit approach, a suitable fluid model (Navier-Stokes, Stokes) uses the stress tensor (1.1) and

combines it with the Folgar-Tucker model [26,34] that governs the evolution of aij
D

Dt
aij = 1

2Ωikakj + 1
2aikΩkj + 1

2λ (eikakj + aikekj − 2ek`aijk`) + CI ||e||(2δij − 6aij).

Here Ω = (∇u − (∇u)T )/2 is the vorticity tensor and CI is an empirically derived interaction

coefficient that depends on the volume fraction. The limitations of this approach are:
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• it requires closure relations and fiber interaction coefficients based on empirical data,

• all the rods must be uniform and slender,

• the model is invalid in the concentrated regime.

In the concentrated regime, ν > 1/d`2, the interactions between fibers dominate and the con-

tribution to the total stress can only be computed by adding the force from each fiber individu-

ally [5,48]. To do this, explicit models are required. Explicit models are also useful in the dilute and

semi-dilute regimes to model irregularly shaped bodies, or to compute interaction constants and

tensor closures to be used in the Folgar-Tucker model. The goal of this dissertation is to develop

techniques that are capable of accurately and stably simulating dense suspensions of rigid bodies.

This method will be computationally efficient, robust, and will resolve rigid bodies of arbitrary

shape over a wide range of concentrations.

1.1 Related Work

Many explicit models represent rigid bodies as prolate ellipsoids [5], sets of connected beads [36,

80], rods [47, 71], or slender bodies [7, 22, 76]. Among explicit methods, we can define two general

groups. The first models the fluid phase and updates the bodies by computing the velocity of the

fluid on the surface of the particles. The immersed boundary method [56], level set methods [18],

lattice Boltzmann methods [42,43], smoothed particle hydrodynamics [59], and dissipative particle

hydrodynamics [58] all fall within this category. An advantage of these methods is that fluid inertia

effects can be included by modeling the fluid equations with the Navier-Stokes equations. Moreover,

if appropriate, the solvent can be non-Newtonian. A disadvantage of explicit methods is that it

requires computing the fluid velocity at all points inside the fluid domain, something that adds

significant computational expense, but may not be of interest. In addition, these methods often

struggle with resolving unbounded or periodic domains.

In problems where the fluid is Newtonian and inertia is negligible, the problem simplifies con-

siderably. In this case, the fluid equations become the Stokes equations, and potential theory [44]

allows us to compute the rigid body velocities without solving for the fluid velocity inside the fluid

domain. This allows us to determine the motion of the bodies solely based on the configuration of

the particles and the background flow. Stokesian dynamics and boundary integral equations both
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make use of potential theory to compute the motions of the particles without directly computing

the velocity in the bulk solvent.

As mentioned, the hydrodynamic interactions between bodies must be considered when sim-

ulating suspensions. If two bodies are well-separated, their hydrodynamic interactions are well-

approximated with a multipole expansion of a few terms. This means that the hydrodynamic in-

teractions of well-separated bodies are almost independent of the body’s shape. For nearly touching

bodies, however, the interaction is much stronger and depends strongly on the body’s shape. That

said, if the bodies have simple shapes, for example spheres or ellipsoids, the interactions of nearly

touching bodies can be precomputed using lubrication theory. Stokesian dynamics [11, 16] com-

bines the multipole representation for bodies that are far apart with lubrication theory to compute

interactions between nearly touching bodies. This has been shown to be very effective for a wide

range of problems, including those with small Peclet numbers where Brownian motion needs to be

considered.

For general shaped rigid bodies however, lubrication theory is not computationally tractable,

since the number of possible hydrodynamic interactions of nearly touching bodies that would need

to be precomputed is loo large. Instead of Stokesian dynamics, boundary integral equations (BIEs)

can be used. BIEs reduce the Stokes equations to an integral over the boundary of the rigid bodies

(and solid walls). This leads to a dimension reduction when compared to explicit methods that

discretize the entire fluid domain. Since BIEs require only a discretization of the boundary, they

can naturally resolve problems with complicated geometries, including unbounded ones. In the

context of the Stokes equations, solutions derived from BIEs automatically satisfy the incompress-

ibility condition and the far field condition. This is in contrast to many other methods, for example

the finite element method. BIEs have been successfully applied to various kinds of suspensions,

including rigid bodies [13, 17, 76], vesicles [63, 64, 68], and drops [73]. In addition, BIEs can be

rigorously analyzed using the Fredholm alternative and the spectral theorem. This theory guides

numerical methods whose convergence properties are provably optimal. Of course, the BIE for-

mulation must be approximated by applying discretization methods. One discretization technique

applies quadrature to a collocation scheme. By using appropriate quadrature, high-order or even

spectral accuracy can be achieved. The limitation of BIEs is that the resulting linear system is

dense. In contrast, methods that discretize the entire domain result in larger, sparse linear systems.

5



Nonetheless, by using efficient iterative solvers and fast summation techniques, an O(N) solver for

the dense linear system is possible, where N is the number of discretization points on the boundary

of the domain.

Power and Miranda [60, 61] developed an integral equation representation for the Stokes equa-

tions. Their formulation is particularly nice since its discretization is high-order, invertible, and

compatible with fast algorithms so that it can be efficiently solved. In particular, the condition

number of the discrete linear system is independent of the size of the system N . The Power and

Miranda representation has been used to simulate suspensions of rigid bodies [13,17,76].

The Stokes equations prohibit contact between bodies in finite time, however, numerical errors

may cause overlaps between bodies. When using a model that explicitly represents rigid bodies,

care must be taken when advancing in time to avoid collisions and overlaps. An algorithm that

prevents collisions between rigid bodies, but allows for a large time step size is desirable. Adaptive

time stepping and local refinement can help [41, 65], but particularly in concentrated suspensions,

adaptive time stepping may require an excessively small time step to ensure contact is avoided.

Repulsion forces [25,49,51] are another approach to prevent contact. Popular forces are variants

of a Morse or Lennard-Jones potential that grows as a high-order polynomial as two bodies approach

[25, 49]. Spring based repulsion forces [37, 85] have also been used. Methods such as these are

inherently heuristic and require the choice of tuning parameters. Furthermore, they introduce

stiffness, and therefore still require a small time step to maintain stability. Lastly, they still do not

guarantee that collisions are avoided. We adopt a method outlined in [51] that guarantees that each

time step is collision-free. This method enforces a constraint on the variational form of the Stokes

equations. This constraint appears as a repulsion force in the resulting Euler-Lagrange equations

(i.e. the regular Stokes equations), and is free of tuning parameters and guarantees that contact is

avoided.

1.2 Contributions

Lu et al. [51] use a locally-implicit time stepper coupled with a contact algorithm to simulate

suspensions of vesicles and rigid bodies. Locally-implicit time steppers treat the inter-particle

hydrodynamic interactions explicitly by lagging them from the previous time step. This method

yields a block diagonal system to solve at every time step. Unfortunately, due to nearly touching
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bodies, the locally-implicit time stepper requires a small step size or a large minimum separation

distance to maintain stability. In this dissertation, we couple the contact algorithm [51] with a

globally-implicit time stepper. Globally-implicit time steppers treat all hydrodynamic interactions

implicitly. This results in a dense linear system to solve at every time step. While each globally-

implicit time step is more computationally expensive than a locally-implicit time step, it allows

larger time steps and a smaller minimum separation distance between particles. In particular, for

certain problems, the locally-implicit time stepper is not stable, even for time steps on the order

of 10−7. In contrast, globally-implicit time steppers are stable for an acceptable time step size, a

characteristic that is necessary to simulate dense suspensions.

We use this method to investigate concentrated suspensions, alignment angles, and the effec-

tive viscosity of suspensions in confined geometries. Compared to previous methods, our method

better resolves the interactions between closely touching bodies, and the result is a stable time

stepping method that avoids contact. We investigate the effect of the repulsion force on the time

reversibility of the suspension and demonstrate that these repulsion forces cause the particles to

jump streamlines and therefore break reversibility. In addition, we make qualitative comparisons

between our method and other methods and experiments from the literature.

1.3 Limitations

The main limitation of this model is that it is developed in two dimensions. To be useful

for composite manufacturing, a three-dimensional model is required. Three-dimensional models for

boundary integral equations are well-developed [17,55], though they are more difficult to implement

and computationally more expensive. Moreover, they require many more unknowns, meaning that

far fewer particles can be simulated in three dimensions at a fixed number of discretization points.

To compute the shear viscosity of a suspension, we have chosen to model the torque exerted on

a Couette apparatus. In reality though, wall effects have a large impact on the particle trajectories.

For this reason, unbounded periodic simulations, perhaps involving Lees-Edwards boundary condi-

tions [46], are preferred. In the context of BIEs, this boundary condition has not been investigated,

however periodic simulations involving boundary integral equations have been developed [2, 67].

The computation of repulsion forces requires the solution of a nonlinear complementarity prob-

lem (NCP). This NCP is linearized and this results in a sequence of linear complementarity problems
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(LCPs). From a mathematical standpoint, there is no theory that guarantees that these LCPs has

a unique solution. This might cause the NCP iterations to stall or diverge, which is something

that we observe for concentrated suspensions in bounded domains. In addition, even if the LCPs

do have a unique solution, many LCP iterations may be required to converge to the NCP solution.

Since each LCP solution requires us to solve the Stokes equations, this can be very computationally

expensive.

8



CHAPTER 2

STOKES EQUATIONS

In this chapter we review the Stokes equations, the governing equations for low Reynolds number

flow. These equations are appropriate for particulate flows, since the small length scales, the

slow velocity, and the high viscosity of the solvent means that the Reynolds number is small.

Using the Stokes equations instead of the more general Navier-Stokes equations provides significant

simplifications. The Stokes equations do not contain a nonlinear inertial term, hence the fluid

velocity can be written in terms of the boundary data when there are no non-conservative forcing

terms. One of the benefits of formulating the Stokes equations as a boundary integral equation is

that it reduces the two-dimensional problem to a one-dimensional boundary integral. This leads to

a method that naturally resolves complicated moving boundaries.

We will be modeling mobile rigid bodies suspended in a Stokesian fluid. These bodies interact

hydrodynamically with each other and with solid walls. The suspended bodies will be rigid, meaning

that they cannot change shape; they can only translate and rotate. This allows us to describe the

position of a rigid body using only its center and an orientation angle. Its velocity can likewise be

specified by a translational and a rotational velocity.

2.1 Fluid Equations

We are interested in modeling suspensions of rigid bodies, and this requires a good description

of the state of the solvent. Given a domain V ⊂ R2 with boundary S, the state of a fluid can be

described by the incompressible Navier-Stokes equations,

∂u
∂t

+ u · ∇u = −1
ρ
∇p+ ν∆u + f , x ∈ V, t ≥ 0, (2.1a)

∇ · u = 0, x ∈ V, t ≥ 0, (2.1b)

where ρ is the (constant) density, p is the pressure, u is the velocity, ν is the kinematic viscosity, and

f is an external body force acting on the fluid. Equation (2.1a) is a statement of the conservation of

momentum, and (2.1b), the incompressibility condition, is a statement of conservation of mass. To
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close the formulation, boundary conditions and an initial condition for u are required. We consider

Dirichlet boundary conditions, along with an arbitrary initial condition

u(x, t) = g(x, t), x ∈ S, t ≥ 0

u(x, 0) = u0(x), x ∈ V.

To satisfy global conservation of mass, the boundary condition g must satisfy the no-flux compat-

ibility condition ∫
S

g · n dS = 0,

where n is the unit normal on S. Since we are restricting ourselves to planar flows, the velocity u

is a vector in R2.

Following well-established techniques for non-dimensionalization, we pick a characteristic length

scale `, a characteristic velocity scale U , a characteristic time scale τ , and make the following

substitutions:

x∗ = x/`, u∗ = u/U, t∗ = t/τ, p∗ = p`/(ρνU), f∗ = f/|f |. (2.2)

This leads to the non-dimensionalized Navier-Stokes equations,

St
∂u∗

∂t∗
+ u∗ · ∇∗u∗ = − 1

Re
∇∗p∗ + 1

Re
∆∗u∗ + 1

Fr2 f∗,

∇ · u∗ = 0,

where St = `/(Uτ) is the Strouhal number, Fr = U/
√
`|f | is the Froude number, and Re = `U/ν

is the Reynolds number. If Re � 1 and St � 1/Re then the terms with 1/Re dominate and the

remaining terms can be neglected. This gives the nondimensional steady incompressible Stokes

equations,

−∆u +∇p = 1
Fr2 f , x ∈ V, (2.3a)

∇ · u = 0, x ∈ V, (2.3b)

u = ub, x ∈ S. (2.3c)

For notational clarity we have dropped the asterisk superscript, however, u, p, f , and all the

derivatives are non-dimensionalized according to (2.2). For the remainder of this dissertation,
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whenever we speak of the Stokes equations, we mean the incompressible, steady, nondimensional,

Stokes equations (2.3). The Stokes equations are the governing equations for small scale, slow

moving, viscous flows. These are precisely the kind of flows encountered in most particulate flows.

Defining the stress tensor σ to be

σ = −pI + 1
2
(
∇u + (∇u)T

)
,

the momentum balance (2.3a) can be written as

∇ · σ = 1
Fr

f , x ∈ V.

The stress tensor has a static contribution from the pressure and a dynamic contribution from

viscous forces and is often written as,

σ = −pI + e,

where e = (∇u + (∇u)T )/2 is the strain rate tensor and represents the contribution of viscous

forces to the total stress.

In many practical cases, f is a conservative field and can therefore be expressed as the gradient

of a scalar field and included in the pressure gradient, thus leaving a homogeneous equation. In

this case, the momentum balance for the Stokes equations is

∇ · σ = 0, x ∈ V.

The Stokes equations represent a significant simplification of the Navier-Stokes equations. By

neglecting the nonlinear u ·∇u term and the time dependent ∂u/∂t term, we obtain a set of linear,

time-independent, elliptic equations. Because of the linearity, the superposition principle applies.

This makes the Stokes equations much easier to analyze mathematically than the Navier-Stokes

equations. For example, it is known that given appropriate boundary conditions, a solution to the

three-dimensional Stokes equations exists and is unique (up to a constant for the pressure). By

contrast, existence and uniqueness of the three-dimensional incompressible Navier-Stokes equations

is an unresolved problem, and is one of the Millennium Prize problems [15].

2.2 Rigid Body Motion

This dissertation is concerned with rigid (i.e. non-deforming) bodies. When such a body moves,

it must do so without changing shape, meaning that it can only translate and rotate. For a body
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in R3 with a center of rotation c, all rigid body motions can be expressed as

uRBM(x) = U + ω × (x− c), (2.4)

where U ∈ R3 is a constant translational velocity and ω ∈ R3 is a constant angular velocity. In

R2, ω = (0, 0, ω), so a rigid body motion is

uRBM = U + ω(x− c)⊥,

where x⊥ = 〈−x2, x1〉. Once we know the translational and rotational velocities of a body under-

going a rigid body motion, equation (2.4) gives the velocity at any point inside that body.

Proposition 2.2.1 shows that the stress field associated with rigid body motion is zero every-

where. The associated proof uses the standard third-order Levi-Civita tensor to denote the cross

product in R3, however the result holds in R2, where ω1 = ω2 = 0.

Proposition 2.2.1. The stress tensor of a rigid body motion is zero.

Proof. Twice the strain rate 2e = (∇uRBM + (∇uRBM)T ) of a rigid body motion satisfies

2eij = ∂i (Uj + εjk`ωk(x` − c`)) + ∂j (Uj + εik`ωk(x` − c`))

= εjk`∂i (ωk(x` − c`)) + εik`∂j (ωk(x` − c`))

= εjk`ωkδi` + εiklωkδj`

= εjkiωk + εikjωk.

Since, by definition, εjki = −εikj , it follows that eij = 0.

By equation (2.3a), ∆uRBM = ∇p. Since uRBM is linear in x, ∆uRBM = ∇p = 0. Thus, the

pressure of a rigid body motion is constant, and typically is taken to be zero. Therefore, the total

stress of a rigid body motion, σ = −pI + e, is zero.

Each rigid body is subject to a net force and torque. For a rigid body with boundary S, unit

normal n, and center of rotation c, the hydrodynamic component of the force and torque F and L,

respectively, are

F =
∫
S

f dS, L =
∫
S

(x− c)⊥ · f dS,
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where f = σ · n is the fluid traction acting on the body. In order to study how rigid bodies move

under the influence of forces and torques, we need to solve the equations of motion,

m
dU
dt

= F, I
dω

dt
= L, (2.5)

where m is the mass of the body and I is its rotational inertia. Assuming the body has a constant

density ρ, then I = ρ
∫
A |x − c|2 dA, where A is the cross-sectional area of the particle. Scaling

time in (2.5) by `/U and the force by νU`/ρ we have

Re
m

ρ`3
dU
dt

= F, Re
I

ρ`5
dω

dt
= L.

Thus when Re � 1, the bodies undergo no acceleration. This is the basis for the quasistatic

approximation. The fact that the bodies are not accelerating means that (2.5) is not needed, and

that the body center c and angle θ evolve according to

dc
dt

= U, dθ

dt
= ω.

The quasistatic approximation allows us to solve a sequence of steady Stokes equations, even as

the rigid bodies move and the geometry changes. The fluid is assumed to instantaneously adjust

to the new geometry.

2.3 Integral Representation

In the homogeneous case (when f is conservative), potential theory and Green’s identity allow

us to represent the solution to the Stokes equations as an integral of the fluid velocity and traction

on S. This leads to a dimension reduction, and once we know the velocity and traction on the

boundary, the solution at any point inside V is represented as a boundary integral. The major

advantage of this dimension reduction is that it simplifies discretizing complicated geometries.

The first step to develop an integral equation formulation is to compute the fundamental solution

of (2.3). This is a pair of functions u(x) and p(x) satisfying

∇ · σ = ∆u−∇p = −Fδ(x− x0), x ∈ R2, (2.6a)

∇ · u = 0, x ∈ R2, (2.6b)

where δ(x − x0) is the Dirac delta function centered at x0. We note that the choice of sign on

the right hand side of (2.6a) is arbitrary and an equivalent formulation exists if a positive sign is
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used. A detailed discussion of distributions, including the Dirac delta function, is found in many

textbooks, e.g. [29]. For our purposes, however, (2.6a) means that:

1. ∇ · σ = 0 for all x 6= x0,

2.
∫
R2 ∇ · σ dV = −F.

In R2

u(x) = F · G(x,x0)
4π , p(x) = F · P(x,x0)

4π ,

satisfies (2.6) [62], where

Gij(x,x0) = −δij ln r + rirj
r2 , Pj(x,x0) = 2rj

r2 + P∞j ,

and r = x−x0, r = |r|, G(x,x0) is called the Oseen tensor, and G(x,x0)/(4π) is called the Green’s

dyadic. The pressure only appears as a gradient in the Stokes equations and is therefore only

determined up to the constant P∞j . By combining the velocity and the pressure, the corresponding

stress tensor is

σij(x) = Tijk(x,x0)Fk
4π ,

where

Tijk(x,x0) = −4rirjrk
r4 .

The solution of any eliptic homogeneous PDE can be represented in terms of integrals along the

boundary of the domain of the solution and its derivatives. An example is Green’s third identity

for the Laplace equation. If w(x) is a harmonic function, then

w(x) =
∫
S
w(y) ∂

∂n

( 1
2π log |x− y|

)
ds(y)− 1

2π

∫
S

log |x− y|∂w
∂n ds(y), x ∈ V.

The solution to the Stokes equations can be written in terms of boundary integrals of u and

the surface traction f = σ · n, where n is the unit normal pointing out of the fluid domain. By

applying the Lorenz reciprocal theorem [39,44,62]

u(x) = −
∫
S

fi(y)Gij(x,y)
4π dS(y) +

∫
S
ui(y)Tijk(x,y)nk(y) dS(y), x ∈ V. (2.7)

Equation (2.7) expresses u(x) for x ∈ V in terms of u and f on S.
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The first term in (2.7),

S[f ](x) =
∫
S

fi(y)Gij(x,y)
4π dS(y), (2.8)

is known as the single-layer potential. This represents the velocity field generated by the force

distribution σ(y) · n(y) along S. The second term,

D[u](x) =
∫
S
ui(y)Tijk(x,y)nk(y) dS(y), (2.9)

is known as the double-layer potential. Thus (2.7) can be written as

u(x) = −S[f ](x) +D[u](x), x ∈ V.

We will on occasion write the single-layer and double-layer potentials as

S[f ](x) =
∫
S
fi(y)Wij(x,y) dS(y), D[u](x) =

∫
S
ui(y)Kij(x,y) dS(y),

where W and K are the kernels of the single- and double-layer potentials, respectively, given by

Wij(x,y) = Gij(x,y)
4π , (2.10a)

Kij(x,y) = Tijk(x,y)nk(y). (2.10b)

The point y ∈ S in the layer potentials is known as the source point and the point x ∈ V ∪S is

known as the target point. While equation (2.7) holds for any target point x ∈ V , it is false if x ∈ S.

This is due to a jump in the double-layer potential. If we let x ∈ S and assume the boundary has a

continuous tangent vector, the double-layer potential satisfies the following conditions for x ∈ S:

D[u](x)(i) := lim
ε→0
D[u](x− εn(x)) = −1

2u(x) +D[u](x), (2.11a)

D[u](x)(e) := lim
ε→0
D[u](x + εn(x)) = +1

2u(x) +D[u](x). (2.11b)

However, the single-layer potential does not have such a jump and satisfies:

S[f ](x)(i) := lim
ε→0
S[f ](x− εn(x)) = S[f ](x),

S[f ](x)(e) := lim
ε→0
S[f ](x + εn(x)) = S[f ](x).

Therefore, the jumps in the layer potentials at x ∈ S are

JS[f ](x)K := S[f ](x)(e) − S[f ](x)(i) = 0,

JD[u](x)K := D[u](x)(e) −D[u](x)(i) = u(x).
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We note that the jump in the traction of the single-layer is f , and this is often used to balance

the fluid force with the elastic force of deformable (non-rigid) bodies [63, 64, 68]. In contrast, the

traction of the double-layer is continuous through S. This fact is used in Proposition 2.3.1.

Letting x ∈ S and using the jump condition of the double-layer potential (2.11a), we have the

boundary integral equation (BIE)

S[f ](x) +D[u](x) = 1
2u(x), x ∈ S. (2.12)

Assuming that we know the velocity on S, (2.12) allows us to compute the traction on S and vice

versa. Thus (2.12) is the Stokes analog of the Dirichlet to Neumann map for Laplace’s equation.

Solving (2.12) followed by applying (2.7) is known as a direct BIE formulation.

Instead of using u to compute f (or vice-versa) and then applying (2.7), we use an indirect

integral equation formulation. This is done by representing u with an arbitrary, non-physical,

density function of the single- or double-layer potentials. For example, we could represent u as a

single-layer potential with density ζ(x),

u(x) = S[ζζζ](x), x ∈ V. (2.13)

Recalling that JS[ζ](x)K = 0, and letting x→ S gives the indirect BIE

S[ζ](x) = g(x) x ∈ S. (2.14)

That is, (2.14) is solved for the density function ζ(x) that guarantees the boundary condition

u(x) = g(x), x ∈ S is satisfied. Then u(x) is evaluated for x ∈ V with (2.13). Likewise, we could

represent the velocity as a double-layer potential with an arbitrary function density η(x),

u(x) = D[η](x), x ∈ V. (2.15)

Recalling that JD[η](x)K = η(x) and letting x→ S (from inside V ) gives the indirect BIE

− 1
2η(x) +D[η](x) = g(x), x ∈ S. (2.16)

As in the single-layer equation (2.14), the density function η ensures that the boundary condition

for u is satisfied. We solve (2.16) for the density function η(x) and then use the density function

in (2.15) to evaluate the u(x) for x ∈ V .

Regardless of whether we use a single-layer or double-layer ansatz for u we must solve a BIE.

The Fredholm alternative and spectral theorem allow us to analyze the solvability and stability of

the BIEs (2.14) and (2.16). This is discussed in the following section.
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2.3.1 Fredholm Equations

A general Fredholm integral equation is

λz(x)−
∫
S
K(x,y)z(y) dS(y) = g(x), x ∈ S, (2.17)

where λ is a given constant, g : S → R is continuous, and K(x,y) : S × S → R is continuous and

at worst weakly singular, i.e., ∫
S

(∫
S
|K(x,y)| dS(y)

)
dS(x) <∞.

Typically, the function g(x) is a boundary condition, K(x,y) is related to the fundamental solution

of the PDE of interest, and λ depends on the choice ofK. We are interested in solving for z : S → R.

If λ = 0, (2.17) is called a first-kind Fredholm integral equation, otherwise it is a second-kind

Fredholm integral equation. Therefore, (2.14) is a first-kind Fredholm integral equation and (2.16)

is a second-kind Fredholm integral equation. Fredholm integral equations may be written in the

abstract notation

λz −Kz = g. (2.18)

For example, the double-layer BIE (2.16) can be written in this form, with λ = −1/2 and K = −D.

We now discuss the behavior and solvability of (2.14) and (2.16). To begin, some background

on compact operators in necessary. The following follows closely to [39] where the discussion is

framed in the context of BIEs; more details on compact operators can be found in standard texts

on functional analysis, e.g. [29]. Because of the integrability of K(x,y), K is a compact linear

operator on L2(S). Therefore, by the spectral theorem, the eigenvalues of K cluster only at the

origin, and it can be approximated to any precision with a finite rank linear operator (i.e. a matrix).

This will play a fundamental role when we consider discretizations of BIEs in Chapter 3.

Consider a compact operator on a Hilbert space H (L2(S) is a Hilbert space). A compact

operator is any operator that maps a bounded set to a relatively compact set. Every finite dimen-

sional bounded set is relatively compact. Compact operators form a subset of bounded operators,

meaning that every compact operator is necessarily bounded. It follows that identity operator I is

compact if and only if H is finite dimensional, since in an infinite dimensional space, the identity

maps bounded sets that are not relatively compact to themselves. Multiplication by a bounded

operator from either the left or the right preserves compactness.
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From this, we can deduce that an infinite dimensional compact operator K cannot have a

bounded inverse. To show this, we observe that if K−1 is bounded, then I = KK−1 must also be

compact, since multiplication by a bounded operator preserves compactness. This contradicts the

statement that the identity is not compact on infinite dimensional spaces. Therefore, the inverse

of a first-kind Fredholm integral equation is unbounded, meaning that small changes in the data g

lead to arbitrarily large changes to the solution z. At a numerical level, the unboundedness results

in a matrix with an increasing condition number as the discretization is refined.

The inverse of a second-kind integral equation, however can be bounded. The Fredholm alter-

native states that either a second-kind Fredholm integral equation of the form (2.18) has a unique

solution for any g, or the corresponding homogeneous equation

λz −Kz = 0

has nontrivial solutions. This is analogous to the invertible matrix theorem of linear algebra. If the

homogeneous equation has nontrivial solutions, then these solutions are null functions of (2.18) and

also eigenfunctions of the operator K corresponding to the eigenvalue λ, since the null functions

satisfy

Kz = λz.

If λ is not an eigenvalue of K, then the null space of (2.18) is empty and its inverse is bounded.

Therefore, second-kind equations are well-posed, but care must be taken if λ is an eigenvalue of K.

To determine if (2.18) has a nontrivial null space, we exploit even more symmetries between

second-kind Fredholm equations and square matrices. To do this we first define the adjoint, which

plays the role of the matrix transpose for compact operators. The adjoint of a compact operator

K is the unique operator K∗ satisfying

〈Kx, y〉 = 〈x,K∗y〉, for all x, y ∈ H(S),

where 〈 ·, · 〉 is the inner product associated with H. If K is compact, then so is K∗.

If λ 6= 0 is an eigenvalue, then the corresponding eigenfunctions are null functions of (2.18),

and they span the null space N(λI −K). As with square matrices, we have the relation

R(λI −K) = N(λ∗I −K∗)⊥,
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where λ∗ is the complex conjugate of λ. Since (2.18) has a solution if and only if g ∈ R(λI −K), it

follows that for a solution to exist g must be orthogonal to the null space of the adjoint equation

λ∗I −K∗.

Therefore if a null function v for (2.18) exists (for λ 6= 0), it must satisfy two properties

(a) v must be an eigenfunction for K, corresponding to eigenvalue λ;

(b) v cannot be in N(λ∗I −K∗)⊥.

If one or more null functions exist, then to solve (2.18) for an arbitrary right hand side g, we must

address the null functions. We discuss modifications to (2.18) that do this in the following sections.

2.3.2 Exterior Flow

S
u∞

cn

V

Figure 2.1: Example of an exterior flow problem past a stationary or mobile rigid obstacle.
The fluid domain is outside the green region. The normal vector n points outside the fluid
domain and into the obstacle. The point c can be any point inside the obstacle; in the
case of a mobile particle, it is the center of rotation.

We begin by considering an exterior (unbounded) flow around a single rigid obstacle with

boundary S centered at c (Figure 2.1). The obstacle disturbs the prescribed background flow

u∞(x) by uD(x), meaning that the velocity u at point x is u(x) = u∞(x) + uD(x). The governing
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equations for uD are the Stokes equations, along with a no-slip boundary condition on u,

∆uD = ∇pD, x ∈ V, (2.19a)

∇ · uD = 0, x ∈ V, (2.19b)

uD = U + ω(x− c)⊥ − u∞(x), x ∈ S, (2.19c)

where we have used the fact that S is a rigid boundary. The conditions in the far field are

uD − F ln r = O(1), pD = O(1), as r →∞,

where F is the net force on the particle. For uD to be bounded as ||x|| → ∞, we require that F = 0.

This is known as the two-dimensional Stokes paradox. The Stokes paradox can be understood by

looking at the fundamental solution G(x,x0) for the two-dimensional Stokes equations, which grows

as ln r. In the case of multiple obstacles (to be discussed later), for a bounded solution to exist at

infinity, we require that the total force on all rigid bodies is zero.

The flow outside a rigid obstacle can be represented uniquely with the single-layer potential [62].

Matching the limiting value of the single-layer potential as x approaches S with the boundary

condition (2.19c), gives the indirect BIE

S[ζ](x) = U + ω(x− c)⊥ − u∞(x), x ∈ S. (2.20)

If the translational velocity U and rotational velocity ω are known, then there is a density function

ζ that satisfies (2.20). This is known as the resistance problem. If, on the other hand, the net

force F and net torque L on the obstacle are prescribed, but not the velocity, then (2.20) has more

unknowns (ζ, U and ω) than equations. In this case, we relate the density function to the net force

and torque ∫
S
ζ dS = F,

∫
S
ζ · (x− c)⊥ dS = L. (2.21)

Equations (2.20) and (2.21) form an invertible system for the density and the translational and

rotational velocities of the obstacle. We note that for a rigid body, the density function ζ is actually

the traction f . This is known as the mobility problem. The problem with representing the velocity

using a single-layer potential is that the resulting boundary integral equation is ill-posed since its

inverse is unbounded (Section 2.3.1).
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Alternatively, we can represent the velocity as a double-layer potential. Matching the limiting

value of the double-layer potential with the boundary conditions (2.19c), and applying the jump

condition (2.11a) gives the indirect BIE

− 1
2η(x) +D[η](x) = U + ω(x− c)⊥ − u∞(x), x ∈ S, (2.22)

which is a Fredholm integral equation of the second-kind for the density function η. Note that

because of the direction of the normal we have used the interior jump condition. If this equation is

invertible, then this would be a well-posed problem. Unfortunately, the formulation has a nontrivial

null space. Therefore, by the Fredholm alternative solutions are not unique and may not even exist

for an arbitrary right hand side.

To show that this formulation has a null space, it suffices to show that 1/2 is an eigenvalue of

the double-layer potential. This is demonstrated by recalling equation (2.12). Letting u be a rigid

body motion on S, then the traction f = σ · n is zero (by Proposition 2.2.1), and

D[u](x) = 1
2u(x), x ∈ S.

Therefore, 1/2 is an eigenvalue of D, and the homogeneous version of (2.22) has nontrivial solutions,

these being rigid body motion density functions. In R2, rigid body motions are spanned by two

translational components and one rotational component,

v1 = (1, 0), v2 = (0, 1), v3 = (x2 − c2,−(x1 − c1)).

In fact, for flow around an obstacle, these are the only eigenvectors of the double-layer potential

[38, 39,44,61].

Since −1/2 +D has a nontrivial null space, we expect its range to not cover all solutions of the

Stokes equations. We now show this is the case in R3, but the result also holds in R2.

Proposition 2.3.1. The double-layer potential can only represent flows that generate no net force

or torque on S.

Proof. Consider fluid inside a domain V with surface S. Given two velocity fields that satisfy the

Stokes equations, v and v′, and corresponding surface traction, f and f ′, the Lorenz reciprocal

theorem states [39] ∫
S

v · f ′ dS =
∫
S

v′ · f dS. (2.23)
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Letting v′ be a rigid body motion about c = 0, i.e. v′ = U + ω × x and f ′ = 0,∫
S

v′ · f dS =
∫
S

(U + ω × x) · f dS = 0.

In index notation, ∫
S

(Uifi + εijkωjxkfi) dS = 0.

Recalling that fi = σ`in`, we apply the divergence theorem to convert the surface integral into a

volume integral∫
S

(Uiσ`in` + εijkωjxkσ`in`) dS =
∫
V

(Ui∂`σ`i + εijkωj∂`(xkσ`i)) dV = 0.

Applying the product rule to the last term yields

0 =
∫
V

(Ui∂`σ`i + εijkωj(δk`σ`i + xk∂`σ`i)) dV

=
∫
V

(Ui∂`σ`i + εijkωj(σki + xk∂`σ`i)) dV.

By the symmetry of σ,
∫
V εijkωjσki = 0. Factoring out ∂`σ`i from the remaining terms,∫

V
(Ui + εijkωjxk)∂`σ`i dV = 0.

Since this must hold for any U and ω and over an arbitrary volume V , it follows that

∂`σ`i = ∇ · σ = 0, x ∈ V, (2.24)

so V cannot contain any point forces.

Next, the net force and torque on S are

F =
∫
S

f dS, L =
∫
S

f × x dS.

In index notation after applying the divergence theorem

Fi =
∫
S
σjinj dS =

∫
V
∂jσji dV,

Li =
∫
S
εijkxjσ`kn` dS = εijk

∫
V
∂`(xjσ`k) dV.

By (2.24), the force is zero. Applying the product rule to the torque

Li = εijk

∫
V

(δj`σ`k + xj∂`σ`k) dV

= εijk

∫
V

(σjk + xj∂`σ`k) dV.
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Again by (2.24) the second part of the volume integral vanishes. The other part of the volume

integral,

εijk

∫
V
σjk dV,

is also zero because of the symmetry of σ. Since the traction of the double-layer potential is

continuous through S, and there is no force or torque generated from the interior flow, it follows

that the force and torque of the double-layer representation of an exterior flow is zero. This means

that the net force and torque on S must be zero if the flow is represented using only a double-layer

potential.

Proposition 2.3.1 characterizes the velocity fields that cannot be represented with a double-layer

potential. Therefore, we must modify or complete the double-layer potential representation so that

velocity fields that induce a net force and torque on S are included. We use the completion method

of Power and Miranda [38, 60, 61] where terms that induce an arbitrary net force and torque on S

are explicitly added to the double-layer representation. These terms are the Stokeslet, S[F, c](x)

and the rotlet, R[L, c](x),

S[F, c](x) =
(
−δij ln r + rirj

r2

)
Fi, R[L, c](x) = Lεijrj

r2 ,

where, in this context, r = x − c and r = |x − c|. Figure 2.2 shows examples of a Stokeslet

and a rotlet velocity field. The Stokeslet is the fundamental solution of the Stokes equations and

represents the velocity induced by a point force of strength F. The rotlet represents the velocity

induced by a point torque of strength L. On any surface S enclosing the point c, the net torque of

a Stokeslet is F, while the net torque of a rotlet is L. On any surface not enclosing c, the net force

and torque from the Stokelet and the rotlet are zero.

For an exterior flow around a surface S, the completed double-layer potential is

uDLP(x) = D[η](x) + S[F, c](x) + R[L, c](x), (2.25)

where c is a point enclosed by S. This completed double-layer potential has a full range and can

represent any solution of the Stokes equations [60,61]. Matching (2.25) to the boundary condition

(2.19c) and applying the jump condition (2.11a) as before yields

− 1
2η(x) +D[η](x) + S[F, c](x) + R[L, c](x) = U + ω(x− c)⊥ − u∞, x ∈ S. (2.26)
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Figure 2.2: The Stokeslet (left) and rotlet (right) velocity fields. The Stokeslet has strength
F = (1, 0) and the rotlet has strength L = 1.

To close the system, the Power and Miranda completion relates the net force and torque to the

density function by ∫
S
η dS = F,

∫
S
η · (x− c)⊥ dS = L. (2.27)

Equations (2.26) and (2.27) can be used to solve:

(a) the mobility problem, where F and L are specified and U, ω and η are solved for; or

(b) the resistance problem, where U and ω are specified and F, L and η are solved for.

Note that (2.26) along with the closure (2.27) is still a second-kind Fredholm integral equation, so

the benefits of the second-kind formulation are not lost by this completion.

2.3.3 Interior Flow

We now turn our attention to flow inside an interior simply-connected domain. Such a geometry

is sketched in Figure 2.3. On S, we have the boundary condition on the velocity u = g. We

have already seen that the single-layer representation is ill-posed, so we will not consider that

representation here. As with the exterior flow, we represent the solution at any point x ∈ V as a

double-layer potential. Doing so leads to the second-kind BIE,

− 1
2η(x) +D[η](x) = g(x), x ∈ S. (2.28)

Where again we are using the limiting value coming from the interior of the domain (2.11a).
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S

V

n

Figure 2.3: Example of a bounded, simply connected domain. The fluid region is colored
in gray. The normal points out of the fluid domain.

Unlike the exterior problem, the rigid-body densities are not null functions of (2.28), since they

are not eigenfunctions corresponding to eigenvalue 1/2. However, this formulation does still have

a nontrivial null space [38,44,60].

Proposition 2.3.2. The double-layer potential for an interior flow has an eigenvector that is not

orthogonal to n, the outward unit normal on S.

Proof. To investigate the null space of (2.28), we look at the corresponding homogeneous adjoint

problem

− 1
2ψi(x) +

∫
S
Kji(y,x)ψi(y) dS(y) = 0. (2.29)
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Letting ψi = ni,

−1
2ni(x) +

∫
S
Kji(y,x)ni(y) dS(y) = −1

2ni(x)−
∫
S

4rjrirknk(x)
r4 ni(y) dS(y)

= −1
2ni(x)−

∫
S

4rjrirkni(y)
r4 nk(x) dS(y)

= −1
2ni(x)−

∫
S
Kik(x,y)nk(x) dS(y)

= −1
2ni(x)− nk(x)

∫
S
Kik(x,y) dS(y)

= −1
2ni(x) + 1

2nk(x)δik = 0,

where we have used the identity [44] ∫
S
Kij dS = −1

2δij .

By the Fredholm alternative, for a solution of (2.28) to exist, the boundary condition g(x) must

be orthogonal to n. In other words ∫
S

g · n dS = 0.

Note that this is the no-flux condition required to satisfy the incompressibility condition ∇ · u =

0.

It can be shown that n is the only null function of the adjoint problem [38,44,60]. For simply-

connected domains in R2, this orthogonality condition is in fact always satisfied as it is the no-flux

condition that guarantees global conservation of mass. Now that we have determined the null space

of the adjoint equation, we modify the BIE (2.28) so that a unique solution is guaranteed. We use

Wieland deflation [38] to remove the null function by adding the operator

N0[η](x) = n(x)
∫
S

n · η dS, x ∈ S

to (2.28). The final system is

− 1
2η(x) +D[η](x) +N0[η](x) = g(x), x ∈ S, (2.30)

which has a unique solution η satisfying (2.28). Furthermore the density function η will be orthog-

onal to n.
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Figure 2.4: Example of a bounded multiply-connected domain. The fluid domain is colored
in gray. Obstacles colored in green are mobile bodies and objects colored in red are fixed
solid walls.

2.3.4 Boundary Integral Formulation of Rigid Body Suspensions

We now consider a multiply-connected domain consisting of mobile rigid bodies, interior solid

walls, and a bounding solid wall. A sketch of a bounded multiply-connected domain is shown in

Figure 2.4. Consider a suspension of np mobile rigid bodies and nw interior solid walls. The domain

is enclosed by a solid boundary S0. For each rigid body V p
k , k = 1, . . . , np, we prescribe the net

force and torque Fp
k and Lpk, respectively. The translational and rotational velocities of the rigid
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bodies Uk and ωk are unknowns. For each solid wall V w
` , ` = 1, . . . , nw, the velocity at any point

on its boundary is given, and we solve for the net force and torque Fw
` and Lw` . Each rigid body is

bounded by a surface Spk and has a center of rotation cpk. The union of all the rigid body surfaces

is denoted by Sp. Each solid wall is denoted by Sw` and is centered at cw` . The union of all the wall

surfaces is denoted by Sw.

We represent the velocity as a sum of double-layer potentials around each of the components

of the fluid boundary. This results in a nontrivial null space that we address by combining the

techniques described for exterior (Section 2.3.2) and interior (Section 2.3.3) problems. The double-

layer representation has a single null function from the outer wall (which is not orthogonal to the

normal on the outer wall) and 3(np+nw) null functions from the rigid bodies and solid walls, those

being density functions corresponding to rigid body motions [38, 39, 44, 61]. Therefore for x ∈ V

we make the ansatz

u(x) = D[η](x)+
nw∑
`=1

(S[Fw
` , cw` ](x) + R[Lw` , cw` ](x))+

np∑
k=1

(
S[Fp

k, c
p
k](x) + R[Lpk, c

p
k](x)

)
, x ∈ V.

The density function η is defined on the entire surface, i.e. S0 ∪ Sp ∪ Sw. On the solid walls

and the bounding wall, we prescribe a Dirichlet boundary condition, u(x) = g(x) and on the rigid

bodies we prescribe the net force and torque Fp
k and L

p
k, respectively. Then, the canonical equations

for the mobility and resistance problem [38,39] are:

−1
2η(x) +D[η](x) +

nw∑
`=1

(S[Fw
` , cw` ](x) + R[Lw` , cw` ](x)) +N0[η](x)

= g(x)−
np∑
k=1

(
S[Fp

k, c
p
k](x) + R[Lpk, c

p
k](x)

)
, x ∈ S0,

(2.31a)

−1
2η(x) +D[η](x) +

nw∑
`=1

(S[Fw
` , cw` ](x) + R[Lw` , cw` ](x))

= g(x)−
np∑
k=1

(
S[Fp

k, c
p
k](x) + R[Lpk, c

p
k](x)

)
, x ∈ Sw,

(2.31b)

−1
2η(x) +D[η](x) +

nw∑
`=1

(S[Fw
` , cw` ](x) + R[Lw` , cw` ](x))−Uk − ω(x− cpk)

⊥

= −
np∑
k=1

(
S[Fp

k, c
p
k](x) + R[Lpk, c

p
k](x)

)
, x ∈ Sp.

(2.31c)
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While the left hand side of (2.31) has a trivial null space, there are still more unknowns than

equations. To close the system, we proceed as in the case of a single rigid body by associating the

density function with the net force and torque on each obstacle:∫
Sw

`

η dS = Fw
` ,

∫
Sw

`

η · (x− cw` )⊥ dS = Lw` , ` = 1, . . . , Nw, (2.32a)∫
Sp

k

η dS = Fp
k,

∫
Sp

k

η · (x− cpk)
⊥ dS = Lpk, k = 1, . . . , Np. (2.32b)

Equations (2.31) and (2.32) form an invertible second-kind Fredholm integral equation. They

can be solved for the translational and rotational velocities of the rigid bodies and the net forces

and torques on the fixed solid walls. Note that we still require
∫
S0∪Sw u · n dS = 0 for global

conservation of mass.

Unbounded domains are treated in a similar manner. In this case, for the disturbance velocity

to decay at infinity, the total net force on all the obstacles must be zero. For this reason, we only

consider unbounded flow past mobile rigid bodies where we prescribe the net force
np∑
k=1

Fp
k = 0.

The canonical equations in this case become

−1
2η(x) +D[η](x)−Uk − ω(x− cpk)

⊥

= −u∞ −
np∑
k=1

(
S[Fp

k](x, c
p
k) + R[Lpk](x, c

p
k)
)
, x ∈ Spk ,

(2.33)

along with the closure condition given in (2.32b).

2.3.5 Computing Pressure and Stresses

We are interested in characterizing rheological properties of the suspension. This requires

computing the pressure and stress of the flow. Fortunately, these quantities (and others, such

as the vorticity) can be computed as a post-processing step after we have calculated the density

function, and the forces and torques on the solid walls and rigid bodies.

At a point x ∈ V , the pressure of the double-layer potential [63] is

pD[η](x) = 1
π

∫
S

1
r2

(
1− 2r⊗ r

r2

)
n · η dS, x ∈ V. (2.34)
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At a point x ∈ V , the strain rate tensor of the double-layer potential [63, 66] is

eDij [η](x) = 1
2π

∫
S

1
r4

(
rknkr`η`

(
δij −

8
r2 rirj

)
+ rkηk(nirj + njri) + rknk(ηirj + rjηi)

)
dS, x ∈ V.

(2.35)

We also require the pressure and stresses of the Stokeslets and rotlets,

pS(x) =
nw∑
i=1

r · Fw
i

2πr2 +
np∑
i=1

r · Fp
i

2πr2 pR(x) = 0, (2.36)

as well as the strain rate of the Stokeslets and rotlets,

eS(x) =
nw∑
i=1

r · Fw
i

4πr2

(
I− 2

r2 r⊗ r
)

+
np∑
i=1

r · Fp
i

4πr2

(
I− 2

r2 r⊗ r
)
, x ∈ V ∪ S, (2.37a)

eR(x) =
nw∑
i=1

Lwi
r4

(
r⊗ r⊥ + r⊥ ⊗ r

)
+

np∑
i=1

Lpi
r4

(
r⊗ r⊥ + r⊥ ⊗ r

)
, x ∈ V ∪ S. (2.37b)

At a point x ∈ S, the limiting values of (2.34) and (2.35) must be considered and the resulting

surface pressure and strain rate are

eD[η](x)(i) := +J [η](x) + eD[η](x), (2.38a)

eD[η](x)(e) := −J [η](x) + eD[η](x), (2.38b)

pD[η](x)(i) := −∂η
∂τ
· τ (x) + pD[η](x), (2.38c)

pD[η](x)(i) := +∂η

∂τ
· τ (x) + pD[η](x), (2.38d)

where

J [η](x) = 1
2

(
∂η

∂τ
· τ
)( 2τxτy τ2

y − τ2
x

τ2
y − τ2

x −2τxτy

)
.

Equations (2.34), (2.35), (2.36), (2.37) along with the jump conditions (2.38) allow us to compute

the strain rate and the pressure at any point x ∈ V ∪ S. Finally, the pressure and strain rate can

be added together to form the total stress.
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CHAPTER 3

NUMERICAL METHODS

The canonical equations (2.31) or (2.33), along with the closure formula (2.32) can be solved

analytically only for very simple geometries. To simulate general rigid body suspensions we must

discretize the equations and efficiently solve the resulting linear system. There are multiple spatial

discretizations we could employ. One approach is a Galerkin-based boundary element method

[32,39], the integral equation analogue of the finite element method. Here, the geometry’s boundary

is split into elements and the density function η is approximated by a linear combination of basis

functions with support over a few elements. An alternative method, that we use, is the Nyström

method (Section 3.1), where the value of the density function is approximated at a discrete set

of points. The method begins by enforcing the boundary integral equation at a set of N points

{xi}, i = 1, . . . , N . These points double as quadrature points to discretize the integral operator.

This technique is discussed in detail for the Stokes equations in Section 3.2 and we demonstrate

that the trapezoid rule is an excellent choice for the quadrature in most cases. However, when

bodies are close, the quality of the trapezoid rule deteriorates and specialized quadrature must be

applied (Section 3.3).

The resulting linear system is dense and changes at each time step, so a direct linear solver is

not appropriate. However, an iterative solver is appropriate, since the behavior of the eigenvalues

of the linear system guarantees a bound on the number of required Generalized Minimum Residual

Method (GMRES) iterations (Section 3.4). Therefore, the overall cost to solve the N × N linear

system is proportional to the cost of a single matrix-vector product. A dense matrix-vector product

ordinarily requires O(N2), however, the structure of our specific linear system allows us to take

advantage of a fast summation method to reduce the matrix-vector product to an O(N) operation.

Finally, a block-diagonal preconditioner is used to reduce the number of GMRES iterations.

The solution of the governing equations includes the translational velocity U, and the rotational

velocity ω of each rigid body. To advance the simulation in time, we must solve the ODEs

d

dt
c = U(t), d

dt
θ = ω(t),
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where c and θ are the center of the rigid body and its inclination angle, respectively. The time

stepping can be done in a variety of ways, and in Section 3.5 we investigate first-order forward

Euler and second-order Adams-Bashforth.

3.1 Spatial Discretization

Consider the general boundary integral equation (BIE)

λη(x) +
∫
S
K(x,y)η(y) dS(y) = g(x), x ∈ S. (3.1)

A Nyström method begins by choosing N collocation points {xi}Ni=1 ⊂ S and enforcing the bound-

ary integral equation at these points

λη(xi) +
∫
S
K(xi,y)η(y) dS(y) = g(xi), i = 1, . . . , N.

Next, by approximating the integral using the quadrature points {xi} with corresponding weights

{wi}, the result is the N ×N linear system

λη(xi) +
N∑
j=1

K(xi,xj)η(xj)wj = g(xi), i = 1, . . . , N, (3.2)

or in matrix notation

(λI + A) η̂ = ĝ,

where

Aij = K(xi,xj)wj , ĝi = g(xi), η̂i = η(xi).

Note that the quadrature weights {wi} depend on the geometry of S. If the original integral

equation is solvable for any g, then the resulting linear system will be full rank.

We must choose the collocation points {xi} and weights {wi} in (3.2). This choice directly

affects the accuracy of the quadrature routine. Let S be parameterized by φ(s), s ∈ [0, 2π]. We use

this parameterization to transform the boundary integral over S to one over the interval [0, 2π],∫
S
f(y) dS =

∫ 2π

0
f(φ(s))|φ′(s)| ds.

Since S is a closed boundary, φ(s) is periodic over [0, 2π]. In addition, we assume that S is smooth,

so φ ∈ C∞([0, 2π]). The collocation points are chosen to be equally spaced in parameter space s,

that is xj = φ(sj), where

sj = (j − 1)h, h = 2π
N
.
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A particularly attractive choice for quadrature in this case is the trapezoid rule. That is
∫
S
f(y) dS ≈ h

N∑
j=1

f(φ(sj))|φ′(sj)|.

The trapezoid rule is used because it is spectrally accurate when applied to smooth, periodic func-

tions [79]. As a demonstration of the spectral accuracy for periodic functions, consider numerically

integrating two functions, f1(x) = ex and f2(x) = ecos(x) from 0 to 2π. The first integral is

e2π−1, and the second is 2πI1(0), where I1(x) is the first-order first-kind modified Bessel function.

As shown in Table 3.1, by applying the trapezoid rule, we achieve second-order accuracy when

evaluating the non-periodic integral, and spectral accuracy when evaluating the periodic integral.

Table 3.1: Convergence study using the trapezoid rule for a non-periodic and a periodic
function over the interval x ∈ [0, 2π]. E1 is the relative error of the N point trapezoid rule
applied to f(x) = ex, and E2 is the relative error of the N point trapezoid rule applied to
f(x) = ecos(x). In the first case, the trapezoid rule is second-order accurate, while in the
second case it is spectrally accurate.

N E1 E2
4 1.98×10−1 4.32×10−3

8 5.09×10−2 1.57×10−7

16 1.28×10−2 2.23×10−16

32 3.21×10−3 3.25×10−16

64 8.03×10−4 0

As a final step to applying quadrature, we require the arclength term φ′(sj). This is computed

by using the Fourier representation

φ(sj) =
N∑
k=1

φ̂ke
i(k−1)sk , j = 1, . . . , N.

Then

φ′(sj) =
N∑
k=1

i(k − 1)φ̂kei(k−1)sk , j = 1, . . . , N.

Computing the Fourier coefficients φ̂k requires a discrete Fourier transform, and computing φ′(sj)

requires an inverse discrete Fourier transform. Both of these operations can be done naïvely in

O(N2) operations. However, we accelerate each calculation to O(N logN) operations by using the

fast Fourier transform (FFT).
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3.2 Discretization of Stokes Boundary Integral Equation

Discretizing the boundary integral equation (3.1) depends on the kernel K and the constant λ.

Here, we focus on the Stokes double-layer potential boundary integral equation, where the integral

kernel is given by (2.10b) and λ = −1/2. The kernel, density function, and boundary conditions

are all vector-valued, but this does not change the discretization approach outlined in Section 3.1.

3.2.1 Interior Flow

Considering the Stokes equations in a bounded simply-connected domain, we have to solve

(2.30) for the density function η. Denoting ηi to be η(φ(si)), the N -point trapezoid results in the

linear system

−1
2ηi + h

N∑
j=1

K(φ(si),φ(sj))ηj |φ′(sj)|+ hn(φ(si))
N∑
j=1

n(φ(sj))ηj = g(φ(si)), i = 1, . . . , N,

where h = 2π/N and g(x) is the prescribed Dirichlet boundary condition on the velocity.

At first glance the kernel K is singular when i = j, and it appears that specialized quadrature

is required. However, the singularity is removable and its limiting value can be used instead of

K(φi,φi). In particular, in R2 the kernel of double-layer potential has the limiting value

limy→x
y∈S

Kij(x,y) = κ(x)τi(x)τj(x)
2π , x ∈ S, (3.3)

where κ(x) is the curvature of S at x and τ (x) is the tangent vector of S at x. Replacing the

diagonal terms in the discretization with the limiting value (3.3), the linear system we must solve

is

g(φ(si)) =
(
− 1

2 + h

(
κ(φ(si))τ (si)⊗ τ (si)

2π + n(φ(si))⊗ n(φ(si)
))
ηi|φ′(si)|

+ h
N∑
j=1
j 6=i

(K(φ(si),φ(sj)) + n(φ(si))⊗ n(φ(sj)))ηj |φ′(sj)|, i = 1, . . . , N.
(3.4)

This is a full rank dense linear system of size 2N × 2N , and its solution approximates the values

of η at the collocation points on S with spectral accuracy. Techniques for efficiently solving this

system are discussed in Section 3.4.

We have computed the density function values {η(xi)}Ni=1, but these values have no physical

meaning. We are actually interested in computing the velocity u(x) for x ∈ V . This can be
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approximated with the trapezoid rule

u(x) = h
N∑
i=1

K(x,φ(si))ηi|φ′(si)|, x ∈ V. (3.5)

For a fixed x ∈ V , K(x,y) is a smooth, periodic function. Therefore we expect the trapezoid rule

to approximate u(x) with spectral accuracy, which we now demonstrate.

Consider the Stokes equations inside an ellipse with semi-major axis 2 and semi-minor axis 1

(Figure 3.1). Inside this geometry V we consider the Stokes equations with boundary conditions

g(x) = (x,−y), x ∈ S. This problem has the exact solution u(x) = (x,−y), x ∈ V . We perform

a convergence study by solving the linear system (3.4) at various levels of refinement and then

computing u(x) using (3.5) at a set of target points x ∈ V . The results in Table 3.2 show spectral

accuracy, but some target points result in larger error constants. In particular, at a fixed resolution

N , the error grows as x approaches S. This increase in the error occurs because the derivative of

the double-layer kernel grows as the target point approaches the boundary. Because of this, the

trapezoid rule requires an unfeasible number of points to accurately integrate the kernel. A near

singular integration technique is needed in this case and is discussed in Section 3.3.

Table 3.2: We solve the linear system (3.4) with boundary conditions g(x) = (x,−y)
on the geometry shown in Figure 3.1. When evaluating the velocity using the computed
double-layer density according to (3.5), the error between the computed solution and the
exact solution is very small at x = (0, 0) with as few as 8 quadrature points. For x = (0, 1)
and x = (0, 1.9) we see spectral accuracy, but the convergence is delayed for x = (0, 1.9).
At x = (0, 1.99) even 512 points gives only a single digit of accuracy.

N error at (0,0) error at (0,1) error at (0,1.9) error at (0,1.99)
8 8.75× 10−16 2.80× 10−1 7.41× 100 8.89× 101

16 3.82× 10−16 8.45× 10−3 2.75× 100 4.32× 101

32 9.93× 10−16 1.01× 10−6 6.04× 10−1 2.07× 101

64 1.95× 10−16 1.25× 10−13 2.90× 10−2 9.45× 100

128 4.12× 10−16 3.90× 10−16 4.17× 10−5 3.84× 100

256 4.23× 10−16 1.11× 10−15 4.59× 10−11 1.13× 100

512 4.66× 10−16 2.41× 10−16 4.37× 10−17 1.30× 10−1
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3.2.2 Exterior Flow

For an unbounded geometry, the discretization of the boundary integral equation is similar to the

bounded case. We no longer require the N0 term, however, to complete the double-layer potential

(Section 2.3.2), we must add on a Stokeslet and a rotlet with strength F and L, respectively. Then,

these strengths must be related to the density function by (2.27). The discretized Stokes equations

(2.26) in this case are(
− 1

2 + h

(
κ(φ(si))τ (si)⊗ τ (si)

2π

))
ηi|φ′(si)|+ h

N∑
j=1
j 6=i

(
K(φ(si),φ(sj))ηj |φ′(sj)|

)
+ U + ω(φ(si)− c)⊥ + S[F, c](φ(si)) + R[L, c](φ(si)) = −u∞, i = 1, . . . , N.

(3.6)

The closure formulas (2.27) involve a periodic integral, so we discretize them also with the trapezoid

rule

h
N∑
k=1

ηk|φ′(sk)| = F, h
N∑
k=1

η · (φ(sk)− c)⊥|φ′(sk)| = L. (3.7)

For a mobile rigid body, F and L are known and so are moved to the right hand side of (3.6).

The result is the full rank linear system(
−1

2I + D B
BT 0

)(
η

Û

)
=
(
−u∞

F̂

)
,

where D ∈ R2N×2N represents the contributions of the double-layer potential to the velocity, Û

is shorthand for the vector (U, ω), F̂ is shorthand for the vector (F, L), and BT ∈ R3×2N is the

discrete closure relation (3.7). This leaves a R(2N+3)×(2N+3) dense linear system to solve.

Once we have computed {η(xi)}Ni=1, we can again use it along with F and L to compute the

velocity with spectral accuracy at any point x ∈ V by using the trapezoid rule

u(x) =
N∑
i=1

K(x,φ(si))ηi|φ′(si)|+ S[F, c](x) + R[L, c](x), x ∈ V.

As discussed in Section 2.3.2, for a bounded solution to exist at infinity, F = 0 and L = 0.

We have included them in this formulation for clarity. In the following section, we will discuss

simulations involving more than one rigid body, and in those cases F and L need not be zero.

3.2.3 Multiply-Connected Geometry

For multiply-connected domains (Figure 2.4), we must consider not only the contributions

between points on the same body (intra-body effects), but also contributions between points on
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different bodies (inter-body effects). Consider a collection of mobile rigid bodies inside a bounded

or an unbounded multiply-connected domain. Denote the number of rigid bodies as np and the

number of interior fixed walls as nw. Let rigid body k be parameterized by φk(s) and wall k by

ϕk(s), s ∈ [0, 2π).

Denote the density function on rigid body k as ηk and on solid wall k as ζk, and consider

evaluating the velocity at a point x on rigid body q, i.e. x ∈ Spq . There are four terms that

contribute to this:

1. The contribution to the double-layer potential due to rigid body q:

− 1
2η

q(x) +D[ηq](x),

2. The contribution from all other rigid bodies:
np∑
k=1
k 6=q

D[ηk](x),

3. The contribution from all solid walls (including the bounding wall Sw0 if it exists):
nw∑
k=0
D[ζk](x),

4. The contribution from Stokeslets and rotlets:
np∑
k=1

(
S[Fp

k, c](x) + R[Lpk, c](x)
)

+
nw∑
k=1

(S[Fw
k , c](x) + R[Lwk , c](x)) .

The velocity at a point x ∈ Spq is thus

u(x) =− 1
2η

q(x) +
np∑
k=1
D[ηk](x) +

nw∑
k=0
D[ζk](x)

+
np∑
k=1

(
S[Fp

k, c](x) + R[Lpk, c](x)
)

+
nw∑
k=1

(S[Fw
k , c](x) + R[Lwk , c](x)) , x ∈ Spq .

Similarly, the velocity at a point x ∈ Swm is

u(x) =− 1
2ζ

m(x) +
np∑
k=1
D[ηk](x) +

nw∑
k=0
D[ζk](x)

+
np∑
k=1

(
S[Fp

k, c](x) + R[Lpk, c](x)
)

+
nw∑
k=1

(S[Fw
k , c](x) + R[Lwk , c](x)) , x ∈ Swm.
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We now disctetize the canonical equations (2.31) using the trapezoid rule. The discretization

depends on the location of the target point x and we consider the three cases: 1) x ∈ Sw0 , 2)

x ∈ Swk , k 6= 0, and 3) x ∈ Spk . Wall k is discretized as in Section 3.2.1, using Nw points equally

spaced in the parameter s, {ϕk(si)}Nw
i=1 (with spacing hw = 2π/Nw), and rigid body k is discretized

with Np points equally spaced in the parameter q (with spacing hp = 2π/Np). The discrete version

of (2.31a) is(
− 1

2 + hw

(
κ0(ϕ0(s`))τ 0(ϕ0(s`))⊗ τ 0(ϕ0(s`))

2π + n(φ(s`))⊗ n(φ(s`))
))
ζ0
` |(ϕ0)′(s`)|

+ hw

Nw∑
k=1
k 6=`

(
K(ϕ0(s`),ϕ0(sk)) + n(ϕ0(s`))⊗ n(ϕ0(sk))

)
ζ0
k |(ϕ0)′(sk)|

+
nw∑
m=1
D[ζm](ϕ0(s`))

+
np∑
r=1
D[ηr](ϕ0(s`))

+
nw∑
m=1

(
S[Fw

m, cwm](ϕ0(s`)) + R[Lwm, cwm](ϕ0(s`))
)

= g(ϕ0(s`))−
np∑
r=1

(
S[Fp

r , cpr ](ϕ0(s`)) + R[Lpr , cpr ](ϕ0(s`))
)
, ` = 1, . . . , Nw.

(3.8a)

Intra-body contributions

Contributions from other walls

Contributions from rigid bodies
Rotlet and Stokeslet contributions

Since we are prescribing the force and torque on the rigid bodies, the contributions from the rigid

body Stokeslets and rotlets are a known quantity and can be moved to the right hand side. The

net force and torque on the interior walls is unknown however, so the contribution from the wall

Stokeslets and rotlets remain on the left hand side.
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For interior fixed walls, the discretization is almost identical, except that we no longer need the

N0 term (see (2.31b)). The discretization on wall j is(
− 1

2 + hw

(
κj(ϕj(s`))τ j(ϕj(s`))⊗ τ j(ϕj(s`))

2π

))
ζj` |(ϕ

j)′(s`)|

+ hw

Nw∑
k=1
k 6=`

(
K(ϕj(s`),ϕj(sk))s

)
ζjk|(ϕ

j)′(sk)|

+
nw∑
m=0
m 6=j

D[ζm](ϕj(s`))

+
np∑
r=1
D[ηr](ϕj(s`))

+
nw∑
m=1

(
S[Fw

m, cwm](ϕj(s`)) + R[Lwm, cwm](ϕj(s`))
)

= g(ϕj(s`))−
np∑
r=1

(
S[Fp

r , cpr ](ϕj(s`)) + R[Lpr , cpr ](ϕj(s`))
)
, ` = 1, . . . , Nw.

(3.8b)

.

Intra-body contributions

Contributions from other walls

Contributions from rigid bodies
Rotlet and Stokeslet contributions

For rigid body j the translational velocity Uj and rotational velocity ωj are unknowns. The

velocity on the boundary Spj is Uj +ωj(x− cpj )⊥. This replaces the given boundary condition g(x)

and put on the left hand side (see (2.31c)). The resulting discretization is(
− 1

2 + hp

(
κj(φj(q`))τ j(φj(q`))⊗ τ j(φj(s`))

2π

))
ηj` |(φ

j)′(q`)|

+ hp

Np∑
k=1
k 6=`

(
K(φj(q`),φj(qk))s

)
ηjk|(φ

j)′(qk)|

+
nw∑
m=0
D[ζm](φj(q`))

+
np∑
r=1
r 6=j

D[ηr](φj(q`))

+
nw∑
m=1

(
S[Fw

m, cwm](φj(q`)) + R[Lwm, cwm](φj(q`))
)

−Uj − ωj(φj(q`)− cpj )
⊥

= −
np∑
r=1

(
S[Fp

r , cpr ](φj(q`)) + R[Lpr , cpr ](φj(q`))
)
, ` = 1, . . . , Nw.

(3.8c)

Intra-body contributions

Contributions from walls

Contributions from other rigid bodies

Rotlet and Stokeslet contributions

Note that we have not yet discretized the inter-body contributions. As we saw in Section 3.2.1

(and in particular Table 3.2), the error of the trapezoid rule is unacceptable if x is close to the
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boundary of the domain. For multiply-connected domains, this is also problematic if two discon-

nected components of the geometry’s boundary are sufficiently close. If the target point x is far

from rigid body ` (or wall `) then the double-layer potential due to that rigid body or wall can be

accurately evaluated using the standard trapezoid rule,

D[ζ`](x) ≈ hw
Nw∑
k=1

K(x,ϕ`(sk))ζ`k|(ϕ`)′(sk)|,

D[η`](x) ≈ hp
Np∑
k=1

K(x,φ`(qk))η`k|(φ`)′(qk)|.

If, however, the target point is close to another body, then a different integration technique is

required. This is discussed in the following section.

3.3 Near Singular Integration

We have observed that the trapezoid rule does a poor job of approximating the double-layer

potential when the target point is close to the boundary, which includes both solid walls and

rigid bodies. This loss of accuracy is caused by a large derivative in the kernel of the double-

layer potential when the distance between the target point and the boundary is small. In dense

suspensions this situation is inevitable, and we must modify the quadrature to maintain stability.

There are many near singular integration methods, including quadrature by expansion [3, 72],

barycentric formulae [6, 31], or asymptotic based methods [55].

In Figure 3.1, we revisit the example in Section 3.2.1 and consider evaluating the velocity at

x = (0, x2). For a fixed x2, the double-layer kernel is smooth. As seen in the right plots however,

as the target point approaches S, the kernel’s derivative becomes larger and larger. However, if

x ∈ S, the singularity is removable, the kernel the takes limiting value (3.3), and its derivative is

no longer large. This is observed in the bottom right plot of Figure 3.1.

We take advantage of this by adopting the near singular integration technique described in [63,

84]. When compared to other near singular integration schemes, this scheme is simpler to imple-

ment, and is relatively non-intrusive to the code base, yet still delivers high-order accuracy. Assume

that the boundary S is discretized with N evenly spaced points, with h being the maximum ar-

clength spacing, and let d(x, S) = infy∈S ||x− y|| be the distance between a target point x and S.

We partition V into two regions: the far zone of S, V1 = {x | d(x, S) ≥ h}, and the near zone of S,

V0 = {x | d(x, S) < h}.
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Figure 3.1: A scenario where near singular integration is needed. The point x is inside an
ellipse with semi-major axis 2 and semi-minor axis 1. The two components of the kernel
of the double-layer potential as a function of the parameterization variable s are plotted
on the right for four values of x2. Despite the large derivatives, the integrand is always
C∞. If x2 is far from the boundary, then the derivatives are small and the kernel can be
integrated accurately using the trapezoid rule. As x2 approaches 2, the kernel becomes
sharply peaked and requires more and more quadrature points for the trapezoid rule to
maintain accuracy. However, when x2 = 2, the target point is on the boundary and once
again the trapezoid rule accurately approximates the integral.

For target points x ∈ V1, the kernel is sufficiently smooth for the trapezoid rule to be appro-

priate. However, if x ∈ V0 the error of the trapezoid rule is too large. Instead of applying the

trapezoid rule, we first find the closest point on S to x, i.e. the point x0 ∈ S that minimizes

||x− x0||2, using Newton’s method. We then define the m interpolation points

xj = x0 + jβh
x− x0
||x− x0||

j = 1, · · ·m,
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S

h

x0

x1

xm

x

V0

V1

Figure 3.2: Schematic of the near singular integration technique used to evaluate the
double-layer potential at a point x ∈ V0. By construction, the points {xi}, i = 1, . . .m,
are in V1, where the layer potential can be accurately evaluated with the trapezoid rule.
At x0 ∈ S the double-layer potential is approximated with a local interpolant of the the
DLP using collocation points on S. Then, a one-dimensional interpolation can be used to
approximate D[η](x).

where β is a constant slightly greater than one, and it guarantees that all interpolation points are

in V1. These points are shown in Figure 3.2. Next, we evaluate the double-layer potential at xj ,

j = 0, . . . ,m. Since {xi}mi=1 ∈ V1, the layer potential at these points can be accurately evaluated

with the trapezoid rule. A local Lagrange interpolant of the smooth function D[η](x), x ∈ S is

used to evaluate the layer potential at x0. Finally, the value of the layer potential at the target

point x is evaluated using a one-dimensional Lagrange interpolant. The accuracy of the method

depends on m and N . Convergence rates and efficiently estimates are given in [63,84].

We apply this scheme with m = 5 to the problem in Figure 3.1. As seen in Figure 3.3, the error

is much smaller when compared to the trapezoid rule.
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Figure 3.3: Convergence study for the near singular integration technique with m = 5
applied to the problem in Figure 3.1 with x2 = 1.99. The near singular interpolation
significantly outperforms the trapezoid quadrature for points in V0.

3.4 Solving the Linear System

Consider a suspension of np rigid bodies in an unbounded domain. In symbolic notation, we

can write the linear system associated with (2.31) and the closures (2.32) as
−1

2I + D11 . . . D1n
... . . . ... B

Dn1 . . . −1
2I + Dnn

BT 0


(
η

Û

)
=
(
−u∞
−F̂

)
, (3.9)

43



where Di,j represents the hydrodynamic interactions between body i and body j and B ∈ R2Nnp×3np

is the block matrix

B =



1 0 −(y1
1 − c1)

0 1 (x1
1 − c1)

...
...

...
1 0 −(y1

Np
− c1)

0 1 (x1
Np
− c1)

1 0 −(y2
1 − c2)

0 1 (x2
1 − c2)
. . .

1 0 −(ynp

Np
− cnp)

0 1 (xnp

Np
− cnp)



. (3.10)

Equation (3.9) is a dense linear system of size N ×N , where N = 2(Npnp +Nwnw) + 3(np + nw).

Solving this system directly using Gaussian elimination or an LU factorization would require O(N3)

operations. Traditionally this was seen as the major limitation of boundary integral equations.

However, the matrices associated with second-kind Fredholm integral equations have a special

properties that allow us to significantly reduce this cost.

Instead of a direct solver that requires building and storing the entire matrix, we use an iterative

solver. The Generalized Minimal Residual method (GMRES) [69] is a Krylov method, and requires

computing a sequence of matrix vector products to compute an approximate solution to the linear

system. The total cost of an iterative solve is O(niterC), where niter is the number of iterations and

C is the cost of a single matrix-vector product. An ordinary matrix-vector product requires O(N2)

operations, meaning the cost of a GMRES solve is O(niterN2). The following theorem allows us to

estimate how quickly GMRES converges [78].

Theorem 3.4.1. Let Pn be the following space of polynomials

Pn := {polynomials of degree ≤ n, with p(0) = 1}.

Assume A ∈ Cm×m is diagonalizable, that is A = VΛV−1, where the columns of V are the

eigenvectors of A and Λ is a diagonal matrix of the eigenvalues of A. Then at GMRES iteration

n, the residual rn satisfies
||rn||
||b|| ≤ cond(V) inf

p∈Pn

sup
z∈Λ(A)

|p(z)|,
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where Λ(A) is the set of the eigenvalues of A and || · || is the `2 norm. In other words the norm

of the residual depends upon the condition number of V and the how closely we can construct a

polynomial of degree n, such that p(0) = 1 and p(z) = 0 for every eigenvalue of A.

Since K is a compact operator, the eigenvalues of a discretization of the second-kind Fredholm

integral equation (λ − K)z = g cluster at λ. Figure 3.4 shows the eigenvalues of the discretized

BIE for the problem in Figure 3.1. As N increases, the new eigenvalues cluster around λ = −0.5.

Because of this, the number of GMRES iterations required to solve the system to a desired tolerance

is independent of N [14]. Therefore, the cost of solving the linear system using GMRES is O(N2).

The structure of the matrix A allows us to accelerate the solver in two ways. The rows in the

symbolic representation (3.9) can be permuted into the new system Ax = b, where

A =

C11 . . . C1n
... . . . ...

Cn1 . . . Cnn

 , b =


η1

Û1
...
ηn
Ûn

 , x =


−u∞1
−F̂1
...
−u∞n
−F̂n

 , (3.11)

and

Cij =
(
−1

2Iδij + Dij Bij

BT
ij 0

)
,

where Bij is the (i, j)-th block in (3.10); this will be all zeros if i 6= j.

The singular values of Cij are largest when i = j (self-interactions). However, the singular

values of the off-diagonal blocks decay very rapidly. Therefore, when applying GMRES to (3.11),

the majority of the iterations are due to the diagonal blocks. Therefore we use a block-diagonal pre-

conditioner, where the diagonal blocks Cii are inverted directly. Thus we define the preconditioner

matrix P

P =

C11 . . . 0
... . . . ...
0 . . . Cnn

 .
Instead of the original linear system, we now solve P−1Ax = P−1b.

To investigate the block-diagonal preconditioner, we consider the setup of nine circles depicted

in Figure 3.6. After discretizing with Np = 16 points per circle, we investigate the singular values of

the blocks C11 (intra-body interactions), C12 (neighboring body interactions), and C19 (separated

body interactions). These singular values are plotted in Figure 3.5. The singular values of the
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Figure 3.4: The eigenvalues of the discrete linear system associated with the problem
shown in Figure 3.1 are plotted along the real axis. As N increases all the new eigenvalues
cluster around x = −0.5. The is a single eigenvalue between 9 and 10.

diagonal block are much larger than the other two blocks. In particular, the off-diagonal singular

values decay quickly to 10−8. GMRES can quickly resolve the off-diagonal interactions, typically in

very few iterations, however the diagonal interactions require many more iterations. This justifies

the use of a block-diagonal preconditioner, where the diagonal blocks are inverted directly.

The eigenvalues of the unpreconditioned and the preconditioned system are shown in Figure 3.7.

For the unpreconditioned system they cluster around −1/2, as expected. For the preconditioned

system the diagonal blocks have been turned into identity matrices, so the eigenvalues cluster
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Figure 3.5: Singular values of the blocks C11, C12 and C19. For the diagonal block C11,
the singular values do not decay quickly. For the off-diagonal blocks the singular values
decay quickly, so GMRES can resolve these interactions in a small number of iterations.

around 1. The unpreconditioned system requires 26 GMRES iterations to solve to a tolerance of

10−12, and the preconditioned system requires 16 iterations.

Theorem 3.4.1 helps us understand speedup the convergence of GMRES after applying the

preconditioner. To estimate infp∈Pn
supz∈Λ(A) |p(z)|, we perform a least squares fit of a polynomial

of degree n through the point (0, 1) and with roots at the eigenvalues of A (or P−1A in the

preconditioned case). In Figure 3.8, we plot the maximum value this polynomial takes at one of

the eigenvalues of the matrix A and P−1A. We see that as n increases, supz∈Λ(A) |p(z)| decreases

much faster for the preconditioned matrix than for the original matrix.

We can also speed up the matrix-vector products by noticing that double-layer kernel (2.10b)

decays as r−1. This means that far field points can be represented by a multipole expansion. The

Fast Multipole Method (FMM) [27,28] uses these multipole expansions along with local expansions

to reduce matrix multiplication from an O(N2) procedure to O(N).
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Figure 3.6: A setup to test our block-diagonal preconditioner. Here we have nine circular
bodies placed in an unbounded background flow.

3.5 Time Stepping

The solution of (3.9) includes the translational and angular velocities of the bodies. The quasi-

static approximation lets us update the centers and orientations according to the ordinary differ-

ential equations (ODEs):
d
dtc

p
k = Uk, k = 1, . . . , np, (3.12a)

d
dtθ

p
k = ωk, k = 1, . . . , np. (3.12b)

After solving (3.12) for a specified time interval, the fluid instantaneously adjusts its velocity

according to this new geometry. These ODEs (3.12) are quite simple and can be solved numerically

by standard methods. We will investigate the forward Euler method

cpk(t
n+1) = cpk(t

n) + ∆tUk(tn), k = 1, . . . , np,

θpk(t
n+1) = θpk(t

n) + ∆tωk(tn), k = 1, . . . , np,

and the second order Adams-Bathforth method

cpk(t
n+1) = cpk(t

n) + 3∆t
2 Uk(tn)− ∆t

2 Uk(tn−1), k = 1, . . . , np,

θpk(t
n+1) = θpk(t

n) + 3∆t
2 ωk(tn)− ∆t

2 ωk(tn−1), k = 1, . . . , np.
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Figure 3.7: Eigenvalues of the linear system (3.11) for the geometry shown in Figure 3.6
using Np = 16 points per circle. In the unpreconditioned cas, the eigenvalues cluster
around −1/2, while in the preconditioned case they cluster around 1. Solving the linear
system whose eigenvalues are the blue points requires 26 GMRES iterations, while solving
the linear system whose eigenvalues are the red points requires 16 GMRES iterations.

Higher-order methods such as spectral deferred correction [64,65] or Runge-Kutta methods [2] can

also be applied. However, when bodies get very close, even high-order time stepping may not be

accurate enough to prevent non-physical overlap between rigid bodies. A method to avoid overlap

between rigid bodies is discussed in Chapter 4.

3.5.1 Locally Implicit

The spatial discretization discussed above is known as globally implicit as the density function on

all bodies are solved for simultaneously at each time step. An alternative discretization [51,68] lags

the density function for inter-body interactions. This is known as a locally implicit discretization.

Instead of a dense linear system, a locally implicit discretization leads to a block-diagonal linear

system, and each block can be inverted directly. This linear system is computationally cheaper
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Figure 3.8: Plots of supz∈Λ(A) |p(z)| vs n for the original and preconditioned case with
eigenvalues as shown in Figure 3.7. At n = 20, supz∈Λ(A) |p(z)| = 4.3 × 10−7 for the
preconditoned matrix, while supz∈Λ(A) |p(z)| = 3.2×10−4 for the unpreconditioned matrix.

to solve, is trivial to parallelize, and works very well for dilute suspensions. However, as we will

see, for dense suspensions locally implicit methods suffer from stability restrictions, particularly

for concentrated suspensions. A globally implicit time stepper remains stable for larger time steps,

and the added cost of solving a full dense linear system can be more than offset by the allowable

larger time steps.

3.6 Examples
3.6.1 Jeffery Orbit

As mentioned in the introduction, the motion of a single ellipse in a shear flow has an analytic

solution [35]. In R2, an elliptical rigid body with aspect ratio λ suspended in a shear flow with

shear rate γ̇ rotates with period 2π|γ̇|(λ+ λ−1) according to

θ(t) = tan−1
(
λ−1 tan

(
λγ̇t

λ2 + 1

))
.
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Figure 3.9: Numerical simulation of a single rigid body in shear flow. Left: The angle and
angular velocity as a function of time (marks), compared to the analytic result (lines).
Right: A convergence study of the error between the numerical approximation of the
angle and the analytic angle after half a period. As expected the forward Euler method
converges with first-order accuracy, while Adams-Bashforth converges with second-order
accuracy.

To test the time stepping routine, Figures 3.9 shows a convergence study comparing the numerical

solution to the exact solution. We find that forward Euler converges with accuracy O(∆t) and

Adams-Bashforth converges with accuracy O(∆t2).

3.6.2 Multiple Bodies

One of the advantages of BIEs over Stokesian dynamics is the ability to simulate suspensions

of arbitrarily smooth bodies. Consider a rigid body with a boundary parameterized by

φ(s) = ((1 + a cos(ks)) cos(s), (1 + a cos(ks)) sin(s)), s ∈ [0, 2π). (3.13)

Here k ∈ Z determines the number of bumps on the surface of the body, and a ∈ [0, 1] the magnitude

of these bumps. These boundaries are shown for multiple values of k and a in Figure 3.10.

To test our algorithms with multiple bodies, we perform a simulation of eight rigid bodies

parameterized according to (3.13). We take a = 0.2 for all the bodies, and several values of k.
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a = 0.5, k = 2
a = 0.3, k = 4 a = 0.2, k = 5 a = 0.1, k = 8

Figure 3.10: Plots of the parameterization (3.13) for various values of k and a.

Snapshots of the simulation are shown in Figure 3.11. As in the case of a single elliptical body, the

rigid bodies rotate. However, hydrodynamic interactions push the bodies either above or below the

stationary plane, so they also translate either to the right or to the left.

As the rigid bodies become close, near singular integration needs to be used if the discretization

is not fine enough. Table 3.3 shows the error at the time horizon for a range of discretization levels

compared to an overrefined solution generated with 512 points per rigid body. Taking ∆t to be 0.4,

without near singular integration, Np = 16 is not enough to prevent overlap between rigid bodies.

Even with near singular integration, Np = 8 is not enough to prevent overlaps. However, using

near singular integration we are able to prevent overlap with Np = 16. For Np > 16 we do not

require near singular integration to prevent collisions. The error from this point decay spectrally,

up to the tolerance of GMRES.

We can also use this test case to examine the efficiency of the block-diagonal preconditioner and

the FMM. Tables 3.4 and 3.5 show the CPU times with and without the preconditioner using regular

matrix-vector products and the FMM, respectively. In both cases the preconditioner significantly

reduces the total number of required GMRES iterations. Even though constructing the block-

diagonal preconditioner requires inverting eight Np×Np matrices per time step, this still results in

computational savings. Without using the FMM, the CPU time scales as O(N2
p ) for large N , while

the FMM reduces this to a method that is roughly O(Np). Figure 3.12 illutstrates the timings in

Tables 3.4 and 3.5.
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t = 0

t = 10

t = 20

t = 30

Figure 3.11: Snapshots of eight rigid bodeis in an unbounded shear flow. All the bodies are
parameterized according to (3.13), with a = 0.2. From left to right, k = 2, 3, 4, 5, 5, 4, 3, 2.
Instead of rotating in place like a single body, hydrodynamic interactions cause the bodies
to shift vertically from y = 0 and therefore translate.
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Table 3.3: Study of a refinement in Np for eight bodies in an unbounded shear flow. Snap-
shots of the simulation are shown in Figure 3.11. The errors reported are the difference
between the rigid body centers at the time horizon and an overrefined solution generated
with Np = 512 points. Simulations in bold indicate that a collision between rigid bodies
occured before the time horizon. With a time step size of ∆t = 0.4, and without near-
singular integration (NSI), we require at least 32 points to avoid collisions between rigid
bodies. Using NSI, we require only 16 points to avoid collisions. Note that for Np ≥ 256
the rigid bodies never get within an arclength of each other, so the NSI and the trapezoid
rule solutions coincide.

Np error (without NSI) error (with NSI)
8 2.90× 101 1.48× 101

16 1.14× 102 1.06× 101

32 2.25× 100 3.63× 100

64 3.30× 10−2 9.22× 10−1

128 7.53× 10−4 8.85× 10−2

256 1.55× 10−9 1.55× 10−9

Table 3.4: CPU timings for eight rigid bodies in an unbounded shear flow at various
resolutions. The GMRES matrix-vector products are computed directly. As predicted, the
number of GMRES iterations does not grow with Np. For large Np, the cost of the linear
solve is dominant and the runtime scales as O(N2

p ). Using a block-diagonal significantly
preconditioner decreases the number of required GMRES iterations each time step, and
also reduces the CPU runtime.

Np
No preconditioner Preconditioner

# matvecs CPU time (s) # matvecs CPU time (s)
8 9771 51 1832 17
16 10678 64 3129 27
32 11631 97 3169 31
64 9593 117 4187 66
128 8217 291 3312 137
256 7572 1075 3323 536
512 7260 6653 3390 3413

3.6.3 Rotors

We are also interested in modeling rigid, active, particles. Active particles are particles that

move by a net force or torque. These can be living cells, for example, bacteria, or non-living matter

subject to an external force or torque coming from, for example, a magnetic field. One class of
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Table 3.5: CPU timings for eight rigid bodies in an unbounded shear flow at various res-
olutions. The GMRES matrix-vector products are accelerated using FMM. As predicted,
the number of GMRES iterations does not grow with Np. For large Np, the cost of the
linear solve is dominant and the runtime scales as O(Np). Using a block-diagonal signifi-
cantly preconditioner decreases the number of required GMRES iterations each time step,
and also reduces the CPU runtime.

Np
No preconditioner Preconditioner

# matvecs CPU time (s) # matvecs CPU time (s)
8 10801 168 4441 75
16 9857 200 3395 61
32 7693 144 3125 75
64 7367 221 3238 118
128 7346 436 3264 233
256 7357 1116 3317 593
512 7375 3245 3380 1692
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Figure 3.12: Code timings to advance eight rigid bodies in unbounded shear flow to the
time horizon. For large enough Np, the timing scales as O(N2

p ) when GMRES uses full
matrix-vector products, while it scales as O(Np) using the FMM accelerated GMRES. In
both cases, preconditioning speeds up the computation by a constant factor.
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active particles are rotors, whose motion is driven by an external torque. Rotors have been observed

experimentally, where the torque comes from chemicals, light, or magnetic or electric fields. These

particles can demonstrate complicated behaviors, from periodic and chaotic motion [52] to large

scale collective organization [83]. To adopt our method to handle rotors, we must simply specify

the net torque on each rotor in equation (2.31c).

In Figure 3.13, we simulate four circular bodies, each undergoing an identical positive (clockwise)

net torque. If the four bodies are initially placed at the corners of a rectangle, they move in a

periodic orbit around the center of the rectangle. If however, the bodies start in a random initial

configuration, the demonstrate chaotic motion. This replicates a result from [52].
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Figure 3.13: Four rotors in quiescent background flow. The particle are all undergoing a
net torque in the same direction. This causes them to spin. As they spin they interact
hydrodynamically with all the other particles. These hydrodynamic interactions can cause
a periodic motion if the four particles are initially arranged in a rectangle, or chaotic
motion if the particles are initially placed at random. This matches the results in [52].
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CHAPTER 4

RESOLVING CONTACT

Complementarity problems appear in many scientific or engineering applications [23]. They have

been used to model contact mechanics [4, 9, 74] and structural mechanics [54] among many other

problems. Complementarity problems are problems that are constrained by a set of complementar-

ity conditions, in other words a requirement that the product of two or more non-negative quantities

is zero. For example, in contact mechanics the force between two objects is typically complementar-

ity to the distance between them. That is, the force between two objects is zero, unless the distance

between them is zero. This suggests a procedure for preventing contact between rigid bodies in our

simulations.

1. Starting from a contact-free configuration, perform a single time step to obtain a new config-
uration.

2. If the new configuration is contact-free, accept this configuration and move to the next time
step. Otherwise, for each rigid body pair in contact, apply a repulsion force until the distance
between them is zero.

3. Once the distance between all rigid body pairs is at least zero, the configuration is contact-free.
Accept this configuration and move to the next time step.

Before formalizing this procedure, some background on complementarity problems is provided.

This discussion follows largely from [10] and [20].

4.1 Description and Properties of Complementarity Problems

A one-dimensional complementarity problem is the following. Given two variables x, y ∈ R, the

complementarity constraint states

y > 0⇒ x = 0, or x > 0⇒ y = 0.

This means that if one variable is positive then the other is zero. This can be stated as the constraint

x ≥ 0, y ≥ 0, xy = 0,
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or in the more compact notation

0 ≤ y ⊥ x ≥ 0.

The space that satisfies this condition is any point on the positive x or postive y axis. If there is a

linear relationship between x and y, then we have the linear complementarity problem (LCP)

y = ax+ b, 0 ≤ y ⊥ x ≥ 0, (4.1)

where a, b ∈ R. Now the solution space is the intersection of the y = ax+ b and the positive x and

y axes. Depending on the values of a and b, this problem admits either zero, one, two, or infinite

solutions. These solutions are summarized in Table 4.1 and plotted in Figure 4.1.

Table 4.1: The number of solutions to the LCP (4.1) depends on the signs of a and b.
There are nine possible cases.

a < 0 a = 0 a > 0
b < 0 0 0 1
b = 0 1 ∞ 1
b > 0 2 1 1

By eliminating y, we can rewrite (4.1) as

ax+ b ≥ 0, (4.2a)

x ≥ 0, (4.2b)

x(ax+ b) = 0. (4.2c)

Now consider the following constrained minimization problem

x∗ = arg min
x≥0

x

(1
2ax+ b

)
,

which is a quadratic program (QP). The Lagrangian of this problem is

L(x, y) = x

(1
2ax+ b

)
− yx,
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Figure 4.1: Examples of one-dimensional complementarity problems corresponding to
(4.1). Solutions are marked with a cross. If a is greater than zero, then there exists a
single solution. If a is less than zero, then two solutions exist if b is greater than zero, or
no solutions exist if b is less than zero. If a = 0 and b ≥ 0, then there is a single solution
at (0, b), unless b is also zero, in which case (x, 0) is a solution for all x ≥ 0.

where y is a Lagrange multiplier needed to enforce the constraint x ≥ 0. The first-order optimality

(KKT) conditions [75] are

∇xL(x, y) = ax+ b− y = 0, (4.3a)

x ≥ 0, (4.3b)

y ≥ 0, (4.3c)

xy = 0, (4.3d)

where the last condition (4.3d) is the complementary slackness condition. From (4.3a) we have

that y = ax+ b, which allows us to rewrite (4.3) as

ax+ b ≥ 0,

x ≥ 0,

x(ax+ b) = 0,
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which is identical to (4.2). Thus we have turned a constrained minimization problem into an LCP.

The necessary optimality conditions for any QP lead to an LCP [57]. We will see this in Section

4.3, when we transform the constrained variational Stokes equations into a sequence of LCPs.

A general LCP in Rn is the following: Given q ∈ Rn and M ∈ Rn×n, find w ∈ Rn and z ∈ Rn

such that

w−Mz = q, w, z ≥ 0, w · z = 0. (4.4)

Often, such a complementarity problem will be written in the compact notation

0 ≤ q + Mz ⊥ z ≥ 0.

This notation is shorthand for saying that every component of z must be positive, every component

of w = q + Mz must be positive, and the inner product w · z must be zero. It follows from these

conditions that at least one of zi or wi must be zero for each i = 1, . . . , N .

More generally, there exist nonlinear complementarity problems (NCPs) in Rn: Given a map-

ping F : Rn → Rn, find z ∈ Rn such that

z ≥ 0, F (z) ≥ 0, z · F (z) = 0. (4.5)

In shorthand notation we write

0 ≤ F (z) ⊥ z ≥ 0.

4.2 Solution Procedures

Solution procedures for complementarity problem is an active field of research. Depending on

the properties of the matrix M, an LCP may be easy to solve with a greedy type algorithm, it may

be NP-hard, or it may be somewhere in between. It has been shown that an LCP with general

integer data is NP-hard [57], and the only algorithm that is guaranteed to find a solution is an

exhaustive search.

Besides exhaustive search, there are several possible avenues to attempt to solve an LCP. These

include pivot methods, splitting methods, and Newton-type methods. We focus on a Newton-type

method known as the Fischer-Newton method that uses Newton’s method to solve the Fischer-

Burmeister function. To solve NCPs, they can be linearized with Newton’s method to create a

sequence of LCPs whose solutions converge to the solution of the NCP.
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4.2.1 Linear Complementarity Problems

Any LCP can be converted into a root finding problem by defining the the Fischer-Burmeister

function φ : Rn → Rn [24]

φ(z) = φ(z,w(z)) =


√
z2

1 + w2
1 − z1 − w1
...√

z2
n + w2

n − zn − wn

 . (4.6)

Equation (4.6) satisfies the property

φi(z,w) = 0 ⇐⇒ 0 ≤ zi ⊥ wi ≥ 0.

This can be verified by looking at at each possible case:

zi < 0 zi = 0 zi > 0
wi < 0 φi > 0 φi > 0 φi > 0
wi = 0 φi > 0 φi = 0 φi = 0
wi > 0 φi > 0 φi = 0 φi < 0

The challenge of finding the root of φ is that it is not differentiable if zi = wi = 0.

Nonetheless, to solve φ = 0, we apply Newton’s method. Starting from an initial guess z0, we

choose a search direction by solving the linear system

J∆zk = φ(zk),

and then update zk according to zk+1 = zk + τ∆zk, where τ is some step size is determined in the

usual ways, for example using backtracking. Ordinarily J would be the Jacobian of φ, however,

since φ not differentiable everywhere, the classical Jacobian may not work.

Instead of using the classical Jacobian, we make use of the generalized Jacobian. Before defining

the generalized Jacobian, we must first define the B-subdifferential.

Definition 4.2.1. Consider a Lipshitz continuous function F : Rn → Rm and assume that F is

continuously differentiable on the subdomain D ⊂ Rn. The B-subdifferential of F at a point x is

the set

∂BF (x) :=
{

lim
y→x
∇F | ∀y ∈ D

}
.
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In other words, ∂BF (x) is the set of limiting values of the gradient of F at x. The generalized

Jacobian of F at x, ∂F (x), is the convex-hull of ∂BF (x). If F is continuously differentiable at x,

then this limit is unique and the generalized Jacobian coincides with the classical Jacobian.

As a simple example, consider the function f(x) = |x|. This function is continuously differen-

tiable everywhere, except x = 0. The B-subdifferential of f(0) is the set of limiting values of the

continuous derivative at x = 0. This is +1 if we are approaching from the right and −1 if we are ap-

proaching from the left. Therefore the B-subdifferential of f(0) is the set {−1, 1}. The generalized

derivative of f at x = 0 is the convex hull of this B-subdifferential, namely {m | |m| ≤ 1}.

The two-dimensional analogue of the absolute value is the function e : R2 → R given by

e(z) = ||z|| =
√

zT z. This function has the gradient ∇e = zT /||z|| but is not continuously

differentiable at the origin. Letting x = r cos θ and y = r sin θ, θ ∈ [0, 2π), the B-subdifferential at

the origin is

∂Be(0) =
{

lim
r→0

(r cos θ/r, r sin θ/r)
}

= {cos θ, sin θ} = {v | ||v|| = 1} .

Then, the generalized derivative of e(0) is the convex hull of this set,

∂e(0) = {v | ||v|| ≤ 1} .

We can apply this result to determine the generalized Jacobian of the Fischer-Burmeister func-

tion (4.6). Letting y = [zi, wi], each component of the range of φ can be written as

φi(y) = e(y)− g(y),

where g(y) = [1, 1]T [zi, wi] = [1, 1]Ty. For y 6= 0, the gradient of φi is

∇φi = yT

||y|| − [1, 1]T .

For y = 0, the generalized gradient is

∂φi = {v− [1, 1] | ||v|| ≤ 1} .

Combining this result with the chain rule, and recalling that w = q + Mz, the generalized

Jacobian of φ(z,w) is

J = ∂φi
∂zj

=


{v− [1, 1] | ||v|| ≤ 1} , zi = wi = 0,

zi
(zi + wi)1/2 (zkδkj + 2wkMkj)−Mij − δij , otherwise.
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At zi = wi = 0 the generalized Jacobian is a set of vectors. A descent direction at this point is

chosen to be a particular element from this set. There are several possible choices for the Fischer-

Burmeister function:

• random: the gradient is picked randomly from the set of possible directions

• zero: the gradient is taken to always be zero

• perturbation: the gradient can be approximated by perturbing zi to some small value ε

• approximation: the gradient is approximated using finite difference

We will use a perturbation to compute the gradient at zi = wi = 0.

4.2.2 Nonlinear Complementarity Problems

To solve the NCP (4.5), a common procedure is to generate a sequence of solutions {zk}, such

that zk+1 is a solution to the LCP

0 ≤ qk + Mkzk+1 ⊥ zk+1 ≥ 0,

where qk and Mk approximate F (z) near zk. There are multiple choices for qk and Mk including

Newton’s method where Mk = ∇F (zk) and qk = F (zk) −Mkzk. As with Newton’s method for

nonlinear equations, provided we are in the neighborhood of the solution z∗ and F is sufficiently

differentiable, this method’s iterates converge quadratically to the solution of the NCP.

4.3 Variational Stokes Equations

In the algorithm outlined in Chapter 3, at each time step we solve the Stokes equations, and

then advance the rigid bodies according to the ODEs (3.12). If two bodies are sufficiently close and

∆t is sufficiently large, then they may overlap after advancing in time. This is especially the case in

concentrated suspensions, where it is certain that there will be rigid bodies in close proximity to one

another. Spatial and temporal adaptivity [41] help, but as the distance between bodies approaches

zero, the required spatial refinement and time step size become computationally infeasible.

As an alternative to adaptivity, a repulsion force can be used. This can be a force based

on a Morse or Lennard-Jones potential [25,49] or a spring based force [37,85], however both these

methods require tuning parameters and add stiffness to the system. Therefore, small time step sizes
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are required when rigid bodies are sufficiently close. In addition, these methods do not explicitly

guarantee that overlap is avoided.

A different approach [51] uses a repulsion force that is free of tuning parameters and explicitly

guarantees that overlap between bodies is avoided. This is done by imposing a constraint on the

variational form of the Stokes equations. In Section 4.4 we define a metric V to measure overlap

between bodies. This metric will be defined so that V < 0 means that there is overlap between

bodies. We will thus constrain the solution to the Stokes equations u to be a solution such that,

after advancing the rigid bodies in time, V ≥ 0.

Without defining V exactly, we can define a few of its properties. First, V must be a function

of u, otherwise constraining u by V would not be possible. Second, we let V a vector, with each

component measuring the overlap between a pair of bodies. Thus V ∈ Rm, where m =
(np

2
)
.

The Stokes equations are the Euler-Lagrange equations of the constrained minimization prob-

lem,

min
u

∫
V

(1
2∇u : ∇u

)
dV,

such that ∇ · u = 0.

By applying the KKT conditions, the pressure p enters as a Lagrange multiplier to enforce the

incompressibility constraint. As mentioned above, in addition to the incompressibility constraint,

we also wish to enforce V ≥ 0, and this leads to the constrained minimization problem

min
u

∫
V

(1
2∇u : ∇u

)
dV, (4.8a)

such that ∇ · u = 0, V ≥ 0. (4.8b)

The Lagrangian of (4.8) is

L(u, p,λ) =
∫
V

(1
2∇u : ∇u− p∇ · u

)
dV + λ ·V(u),

where λ ∈ Rm is a Lagrange multiplier that enforces the no overlap constraint.
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The first-order optimality conditions of the Lagrangian yield the forced Stokes equations,

−∆u +∇p = Fr(x), (4.9a)

∇ · u = 0, (4.9b)

V(u) ≥ 0, (4.9c)

λ ≥ 0, (4.9d)

λ ·V(u) = 0, (4.9e)

where the repulsion force Fr is

Fr(x) =
∫
S
duVTλδ(x−X(s, t0)) dS. (4.10)

Note that duV is nonzero only on the boundaries of the rigid bodies, since changing the velocity at

any other point inside the fluid domain does not change the amount of overlap between bodies. This

is important, as it lets us reuse the boundary integral formulation developed in the previous chapters

without introducing any volume integrals. The problem (4.9) is an NCP since the relationship

between V and u is nonlinear.

4.4 Space-Time Interference Volumes

One possible choice for V is a signed distance function [81], where we measure the closest

distance between each rigid body pair. If two bodies are overlapping then this distance is negative.

This choice, though simple, has the disadvantage that if too large a time step is taken, contact may

be missed even though the configuration is contact-free at the end of the time step. Space-time

interference volumes [30, 51] mitigate this issue by computing the volume swept out in the space-

time plane during each time step. This value will be negative if there is contact at any point during

the time step, even if the final configuration is contact-free.

Let x(s, τ) be a paramaterization of the boundary of the domain (all rigid bodies and walls)

at time τ between an initial contact-free time t0 and t1 = t0 + ∆t. The collection of points x(s, τ)

define a moving boundary S(τ). For each point x(s, τ) let τI(s), t0 ≤ τI ≤ t1 be the intersection

time. That is, τI(s) is the first instance when x(s, τ) comes into contact with a different point on

S(τI). Then, the space-time volume for the time interval [t0, t1] is

V C(S, t1) = −
∫
S(t0)

∫ t1

τI(s)

√
ε2 + (u(s, τ) · n(s, τ))2 dτ ds, (4.11)
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where n(s, τ) is the normal to S(τ) at x(s, τ) and u(s, τ) is its velocity. The small constant ε is

used to smooth the expression and the time integration is over the entire history of particle overlap.

For a fixed τ , the set of points such that τI(s) ≤ τ defines a set of boundary segments. Let

s1(τ) and s2(τ) be the endpoints of one such segment at time τ . Using this notation, τ(s) ≤ τ is

equivalent to s1(τ) ≤ s ≤ s2(τ). We can exchange the order of integration and rewrite (4.11) as

∆V C = −
∫ t1

t0

∫ s2(τ)

s1(τ)

√
ε2 + (u(s, τ) · n(s, τ))2 ds dτ.

To first-order in ∆t this is equivalent to

∆V C = −
∫ s2(t0)

s1(t0)

√
ε2 + (u(s, t0) · n(s, t0))2 ds∆t,

and the rate of change of V C with respect to time is ∆V C/∆t. This lets us define

V (u, t0) = −
∫ s1(t0)

s1(t0)

√
ε2 + (u(s, t0) · n(s, t))2 ds+ ε. (4.12)

We will use (4.12) as a constraint in the next section. Note that we have added ε to make sure

V (u, t0) can be zero. The variation of V (u, t0) with respect to u is

duV [δu] = d
dhV (u + hδu, t0)

∣∣∣∣
h=0

= −
∫ s2(t0)

s1(t0)

(u · n)(n · δu)√
ε2 + (u · n)2 ds. (4.13)

Instead of just preventing overlaps between rigid bodies, we can control the minimum distance

between them. Defining dm ≥ 0, we modify the computation of τI to be the time of contact of the

displaced surfaces S(τ) + dmn(τ). Keeping bodies sufficiently separated means that we can limit

potentially expensive near singular integration and control the stiffness of the problem.

4.5 The Boundary Integral Formulation as a NCP

At each time step the cannonical equations (2.31) and (2.32) are solved. We write these equa-

tions in the compact form

AΨ = b,

where Ψ is a vector consisting of the density function η as well as the translational and rotational

velocities of all the bodies and b is a vector consisting of the velocities on the surfaces of the bodies,

as well as the net force and torque on each body. Modifying the right hand allows us to introduce

contact forces between bodies,

AΨ = b + Gf̂ , (4.14)
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where f̂ is a vector containing the forces and torques on each rigid body, and G ∈ R2N+3n × R3n

maps the contact forces to their corresponding velocities. Defining λ ∈ Rm to be a scaling factor

associated with each possible collision, and F̂c ∈ R3np × Rm to be the repulsion forces associated

with each collision region, we have

f̂ = F̂c · λ =


f̂1
1 . . . f̂m1
... . . . ...

f̂1
np

. . . f̂mnp


λ1

...
λm

 =


λ1f̂1

1 + . . .+ λmf̂m1
...

λ1f̂1
np

+ . . .+ λmf̂mnp

 ,
where f̂ qi are the forces and torques on rigid body i due to contact region q. Equation (4.10) tells

us that f̂i is related to duV, specifically f̂ qi = (Fq
i , L

q
i ) where,

Fq
i =

∫
Γq

i

duV dS, Lqi =
∫

Γq
i

(duV) · (x− cpq)⊥ dS, (4.15)

and Γqi is the surface of part of rigid body i that belongs to contact region q.

We require λ ≥ 0 so that overlapping bodies repel one another. As discussed in the introduction

to this section, we also require that if there is no contact, then the magnitude of the repulsion force

is zero. Thus we have the complementarity problem

0 ≤ V(Ψ) ⊥ λ ≥ 0. (4.16)

Performing a first-order linearization

0 ≤ V(Ψk) + dΨV(Ψk) ·∆Ψ ⊥ λk+1 ≥ 0.

From (4.14), we know that

∆Ψ = A−1 ·G · F̂c · λk+1.

Thus we have the LCP

0 ≤ V(Ψk) + Bλk+1 ⊥ λk+1 ≥ 0, (4.17)

where B = dΨV·A−1 ·G·F̂c. Algorithm 1 presents the algorithm that incorporates repulsion forces

to advance to a contact-free time step. The matrix B is an m×m matrix, where the entry Bij is the

change induced by the ith contact volume by the jth contact force. This matrix is sparse and the

largest entries will be along the diagonal, since a repulsion force will affect mainly its corresponding

volume. Figure 4.2 provides a sketch of this algorithm applied to circles in an extensional flow.
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Algorithm 1: Algorithm to advance simulation to a contact-free configuration.
Data: initial positions q̂0

Result: contact-free configuration q̂1

1 Solve AΨ = b for û;

2 q̂1 ← q̂0 + ∆tû;

3 Compute V(q̂1);

/* NCP iteration */

4 while V < 0 do
5 Compute duV, F̂;

6 B← dΨV ·A−1 ·G · F̂; // Construct B

7 Solve LCP: 0 ≤ V + Bλ ⊥ λ ≥ 0 for λ;

8 b← b + GF̂cλ;

9 Solve AΨ = b for Ψ; // Stokes solve

10 q̂1 ← q̂0 + ∆tû;

11 Compute V(q̂1);

Each time step requires the solution to a sequence of LCPs. Experience has shown that the

solution often converges to the solution of the NCP after only one or two iterations. However, in

certain situations the sequence of LCPs can be very lengthy. Since each LCP solve corresponds to

solving the Stokes equations with a different contact force, limiting the number of required LCP

solves is critical to keeping the computational cost reasonable. An approach that we have used is

a heuristic adaptive time stepping routine. If the number of LCP iterations goes above a critical

value, we halve the time step size. Conversely, if the number of LCP iterations is small (less than

five for example) we increase the time step size slightly.
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t0 t0 + ∆t

V ≤ 0

Stokes solve →

NCP iteration 1 V ≤ 0

Stokes solve →

NCP iteration 2 V = 0

Stokes solve →

Figure 4.2: Consider two circular bodies in the extensional flow (−x, y). Starting from
an initial contact-free configuration, the Stokes equations are solved. After time stepping,
the circles are pushed into one another and overlap occurs. A linear interpolation of
the bodies’ tracjectories are used to estimate V and duV. From duV (red arrows), we
compute the direction of the net force and torque on each body. Solving the LCP (4.17)
gives the magnitude λ0. This repulsion force updates the right hand side b and the
Stokes equations are solved again. In this example, this repulsion force (green arrow)
is not enough to prevent overlap, and the LCP (4.17) is solved again for λ1. This new
repulsion force updates b and the Stokes equations are solved again. At this point the
circles do not overlap and the configuration is accepted and we advance to the next time
step.
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CHAPTER 5

RESULTS

We use our new time stepping method to simulate bounded and unbounded suspensions of two-

dimensional rigid bodies in a viscous fluid. The main parameters are the minimum separation

distance dm, the number of discretization points of each rigid body, Np, and each solid wall, Nw,

and the initial time step size ∆t. We perform convergence studies and investigate the effect of the

STIV algorithm on the reversibility of the flow. To further demonstrate the consequence of STIV,

we include plots of streamlines that cross whenever the collision detection algorithm is applied.

The particular experiments we perform are now summarized.

• Shear Flow: We consider the standard problem of two identical rigid circles in the shear
flow u = (y, 0) with the left body slightly elevated from the right body. We report similar
results to those presented in [51], but we are able to take smaller initial displacements and
minimum separation distances. The contact algorithm breaks the reversibility of the flow,
and this effect is illustrated and quantified.

• Taylor-Green Flow: We simulate a concentrated suspension of 48 rigid ellipses in an un-
bounded Taylor-Green flow. At the prescribed separation distance, our new time stepping
method is able to stably reach the time horizon, while the locally semi-implicit time integrator
proposed by Lu et al. [51] results in the STIV algorithm stalling, even with ∆t = 10−8.

• Porous Monolayer Injection: We consider a suspension of confined rigid circular bodies
motivated by an experiment by MacMinn et al. [53]. The geometry is an annulus with an
inflow at the inner boundary and an outflow at the outer boundary. We again examine the
effect of contact force on the reversibility of the flow, and compute the shear strain rate and
make qualitative comparisons to results for deformable bodies [53].

• Taylor-Couette Flow: With the ability to do high area fraction suspensions without im-
posing a large non-physical minimum separation distance, we simulate rigid bodies of varying
aspect ratios inside a Taylor-Couette device. We examine the effect of the rigid body shape
and area fraction on the effective viscosity and the alignment angles.
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5.1 Shear Flow

We consider two rigid circular bodies in the shear flow u(x) = (y, 0). One body is centered

at the origin, while the other body is placed to the left and above of the origin. With this initial

condition, the particles come together, interact, and then separate. Both bodies are discretized

with N = 32 points and the arc length spacing h = 2π/32 ≈ 0.196. This experiment was also

performed by Lu et al. [51], and we compare the two time stepping methods.

We start by considering the time step size ∆t = 0.4 and minimum separation distance δ = 0

(no contact algorithm). Our new globally implicit method successfully reaches the time horizon

without requiring a repulsion force. However, with the same ∆t, the local explicit time stepping

results in a collision between the bodies, so the collision algorithm is required to reach the time

horizon. Alternatively, the time step size can be reduced, but, as we will see, for sufficiently dense

suspensions, even an excessively small time step size results in collisions. Next, in Figure 5.1, we

investigate the effect of the minimum separation distance on the position of the rigid bodies. The

top plot shows the trajectory of the left body as it approaches, interacts, and finally separates from

the body centered at the origin. In this simulation, we use our new globally implicit time integrator,

but the STIV contact algorithm is not applied. The bottom left plot shows the trajectory of the

particle when the contact algorithm is applied with varying levels of separation. Notice that the

trajectories are identical until near x = 0 when the particle separation first falls below the minimum

separation distance. Finally, in the bottom right plot, the final vertical displacement of the body

initially on the left is plotted. These results are computed for the locally implicit time stepping

method [51], and the general trend of the trajectories are similar.

We next investigate the effect of the collision algorithm on the time reversibility of the flow.

We reverse the shear direction at t = 10 and measure the error between the body’s center at t = 0

and t = 20. We expect an error that is the sum of a first-order error caused by time stepping,

and a fixed constant caused by the minimum separation distance. The results for various values

of dm are reported in Table 5.1. The contact algorithm is not applied when dm = 0 and dm = h,

and we observe the expected first-order convergence. When dm ≥ 2h, the bodies are deflected onto

contact-free streamlines when their proximity reaches the minimum separation distance. After the

flow is reversed, the bodies again pass one another, but they are now on contact-free streamlines,

so the initial deflection is not reversed. For these larger values of dm, we see in Table 5.1 that the
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Figure 5.1: Shear experiment. Top: The initial setup and trajectory of the left body.
Bottom left: The left body’s trajectory for varying minimum separation distances. Notice
how the trajectories are identical until shortly before x = 0 when the contact algorithm is
first applied. Bottom right: The final vertical displacement of the left particle for varying
minimum separation distances.

error eventually plateaus as ∆t is decreased indiciating that the error due to the contact algorithm

dominates.

The break in reversibility is further demonstrated by examining individual streamlines. In

Figure 5.2, we compute the streamline of the left body for three different initial placements. We set

dm = 3h for all the streamlines. With this threshold, only the bottom-most streamline falls below

dm. Therefore, as the bodies approach, the streamlines behave as expected—they do not cross.
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Table 5.1: A study of time reversibility of the shear flow example. At t = 10, the flow
direction is reversed and we calculate the relative error in the initial and final positions.
When the collision constraint is active and force is needed to keep the bodies apart the
contact algorithm dominates the error in the reversibility.

∆t
dm 4× 10−2 2× 10−2 1× 10−2 5× 10−3 2.5× 10−3

0 1.35× 10−1 7.32× 10−2 3.74× 10−2 2.00× 10−2 1.01× 10−2

h 1.35× 10−1 7.32× 10−2 3.74× 10−2 2.00× 10−2 1.01× 10−2

2h 1.88× 10−1 1.41× 10−1 1.17× 10−1 1.08× 10−1 1.02× 10−1

2.25h 2.55× 10−1 2.08× 10−1 1.87× 10−1 1.78× 10−1 1.73× 10−1

2.50h 3.05× 10−1 2.69× 10−1 2.52× 10−1 2.45× 10−1 2.40× 10−1

2.75h 3.64× 10−1 3.31× 10−1 3.13× 10−1 3.07× 10−1 3.03× 10−1

3.00h 4.12× 10−1 3.88× 10−1 3.72× 10−1 3.67× 10−1 3.63× 10−1

However, when the contact algorithm is applied to the blue streamline, the streamlines cross.

5.2 Taylor-Green

For planar flows, we can separate suspensions into dilute and concentrated regimes by comparing

the number of bodies per unit area, ν, to the average body length `. If ν < 1/`2, the suspension

is dilute, otherwise it is concentrated (in 2D planar suspensions, unlike 3D suspensions, there is

no semi-dilute regime). We consider the suspension of 75 rigid bodies in the Taylor-Green flow

u∞ = (cos(x) sin(y),− sin(x) cos(y)). The number of bodies per unit area is ν ≈ 3.1 which is

greater than 1/`2 = 1.1. Therefore, this suspension is well within the concentrated regime.

We discretize the bodies with N = 32 points and select the minimum separation distance

dm = 0.05h. Snapshots of the simulation are shown in Figure 5.3. In this concentrated suspension,

the bodies frequently come into contact. If the interactions between these nearly touching bodies

are treated explicitly, this leads to stiffness. Our time stepper controls this stiffness by treating these

interactions implicitly, and the simulation successfully reaches the time horizon. We performed the

same simulation, but with the locally implicit time stepping method [51]. Because of the near-

contact, smaller time step sizes must be taken. We took time step sizes as small as 10−8, and the

method was not able to successfully reach the time horizon. This exact behavior has also been

observed for vesicle suspensions [63]. In the bottom right plot of Figure 5.3, we show the trajectory
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Figure 5.2: The contact algorithm causes streamlines to cross. Keeping the minimum
separation fixed at dm = 3h, we vary the starting y location of the left body. The teal
and red streamlines do not require a repulsion force to enforce the minimum separation
between the bodies, but the blue streamline does. Once the contact algorithm is applied,
the blue streamline crosses the other streamlines (middle inset). This crossing of the
streamlines breaks the reversibility of the simulation.

of one body for different time step sizes. The dots denote locations where the contact algorithm

is applied. For this very complex flow, the trajectories are in good agreement with different time

step sizes.

5.3 Fluid Driven Deformation

A recent experiment considers a dense monolayer packing of soft deformable bodies [53]. Mo-

tivated by this experiment, we perform numerical simulations of rigid bodies in a similar device.

We pack rigid bodies in a Couette device, but with a very small inner boundary. The boundary

conditions are an inflow or outflow of rate Q at the inner boundary with an outflow or inflow at

the outer cylinder. This boundary condition corresponds to injection and suction of fluid from the

center of the experimental microfluidic device. In the experimental setting, the soft bodies are able
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t = 0 t = 15

t = 30

∆t = 2.50 × 10−2

∆t = 1.25 × 10−2

∆t = 6.25 × 10−3

Figure 5.3: Snapshots of a dense suspension in an unbounded Taylor-Green flow. The
number of bodies per unit area ν is approximately 3.1. This is greater than 1/`2 = 1.1,
which puts the simulation well within the concentrated regime. Bodies are discretized
with 32 points and the minimum separation is δ = 0.05h. The bottom right plot shows
the trajectory of the center of the colored body for different step sizes. Each line in that
plot is marked where a contact force is applied to the colored body to enforce the minimum
separation.

to reach the outer boundary, and the resulting boundary condition would not be uniform at the

outer wall. So that we can apply the much simpler uniform inflow or outflow at the outer bound-

ary, we force the rigid bodies to remain well-separated from the outer wall. We accomplish this by

placing a ring of fixed rigid bodies halfway between the inner and outer cylinders (Figure 5.4). The
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spacing between these fixed bodies is sufficiently small that the mobile bodies are not able to pass.

Since the outer boundary is well-separated from the fixed bodies, the outer boundary condition is

justifiably approximated with a uniform flow.

Qn/(2πRin) Qn/(2πRout)

Figure 5.4: The geometry used in our numerical experiment that is motivated by the
experimental setup of MacMinn et al. [53]. The fixed solid bodies are shaded in black.

We start by examining the effect of the contact algorithm on the reversibility of the flow. We

again reverse the flow at time T and run the simulation until time 2T . The rigid bodies are in

contact for much longer than the shear example in Section 5.1, so maintaining reversibility is much

more challenging. Figure 5.5 shows several snapshots of the simulation, and the bottom right plot

superimposes the initial and final configurations. We observe only a minor violation of reversibility,

and it is largest for bodies that were initially near the fixed bodies—the contact algorithm is applied

to these bodies most frequently.

In [53], the shear strain rate is measured to better characterize the flow. In Figure 5.6, we plot

the shear strain rate for the simulation in Figure 5.5. A qualitative comparison of the numerical

and experimental results are in good agreement. In particular, the petal-like patterns in Figure 5.6

are also observed in the experimental results.

5.4 Taylor-Couette

In many industrial applications, for example pulp and paper manufacturing, suspensions of

rigid elongated fibers are encountered. Motivated by these suspensions we investigate rheological
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t = 6 t = 8 initial and �nal con�gurations

Figure 5.5: Snapshots of a rigid body suspension motivated by an experiment for de-
formable bodies [53]. Fluid is injected at a constant rate starting at t = 0. At t = 4
the flow direction is reversed. Fixed bodies are colored in red, while bodies subject to a
repulsion force are colored in green. The initial configuration has been superimposed on
the final configuration at t = 8 to show the effect of the repulsion forces on reversibility.

and statistical properties of confined suspensions. We consider suspensions of varying area fraction

and body aspect ratio; specifically we consider 5, 10, and 15 percent area fractions and elliptical

bodies of aspect ratio, λ of 1, 3, and 6. In all the examples, ν < 1/`2, so all the suspensions are in

the dilute regime. The bodies initial locations are random, but non-overlapping (Figure 5.7). The

flow is driven by rotating the outer cylinder at a constant angular velocity while the inner cylinder

remains fixed.

Before measuring any rheological properties, the outer wall completes one full revolution so that

the bodies are well-mixed and approaching a statistical equilibrium. We start by considering the
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−4 −3 −2 −1 0 1

Figure 5.6: The shear strain rate log10(|σxy|) of the suspension in Figure 5.5. The
formation of the petal-like patterns is also observed experimentally for a suspension of
deformable bodies [53].

alignment of the bodies. The alignment is particularly insightful since many industrial processes

involve fibers suspended in a flow, and the alignment affects the material properties [45]. One way

to measure the alignment is the order parameter, S, defined as,

S =
〈
d cos2 θ̃ − 1
d− 1

〉
,

where d is the dimension of the problem (2 in our case), θ̃ is the deviation from the expected angle,

and 〈·〉 averages over all bodies. If S = 1, all bodies are perfectly aligned with the shear direction,
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Figure 5.7: Four initial configurations for Taylor-Couette flow with varying volume fraction
φ and aspect ratio λ. From left to right: 1) φ = 5%, λ = 3, 2) φ = 5%, λ = 6, 3) φ = 10%,
λ = 3, 4) φ = 10%, λ = 6.

S = 0 corresponds to a random suspension (no alignment), and S = −1 means that all bodies are

perfectly aligned perpendicular to the shear direction. In our geometric setup, a body centered at

(x, y) has an expected angle of θ̃ tan−1(y/x) +π/2, and the average alignment of the bodies will be

in the direction of the shear, which is also perpendicular to the radial direction.

Since the initial condition is random, the initial configurations in Figure 5.7 have an order

parameter S ≈ 0. As the outer cylinder rotates, we see in Figure 5.8 that S increases rapidly. The

area fractions φ we consider have a minor effect on S; however, the aspect ratio has a large effect.

In particular, suspensions with slender bodies align much better with the flow.

This matches the known dynamics of a single body in an unbounded shear flow, where the body

will align with the shear direction on average. Bodies with a high aspect ratio rotate quickly when

then they are perpendicular to the shear direction and spend more time nearly aligned with the

shear direction. We compare our results to the time averaged order parameter of a single elliptical

body in an unbounded shear flow. If the shear rate is γ̇, a single elliptical body rotates with period

τ = π/(2|γ̇|)(λ+ λ−1) [35] according to

ϕ(t) = tan−1
( 1
λ

tan
(

λγ̇t

λ2 + 1

))
.

The time average order parameter is then,

〈S〉 = 1
τ

∫ τ

0

(
2 cos2(ϕ(t))− 1

)
dt = λ− 1

λ+ 1 .

Independent of the shear rate, for λ = 3 the theoretical 〈S〉 is 1/2 and for λ = 6 it is 5/7. Table 5.2

shows the time and space averaged order parameter for the Couette apparatus. We see that in all

cases our computed time averaged order parameter is higher than the theoretical single fiber case.
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Figure 5.8: The order parameter of different fiber concentrations and aspect ratios. We
see that the 6:1 fibers align better. The 6:1 fibers rotate through the angle perpendic-
ular to the shear direction more quickly than the 3:1 fibers and thus spend more time
approximately aligned with the shear direction. The dashed lines represent the order pa-
rameter for a suspension in an unbounded shear flow with bodies that do not interact
hydrodynamically. The red line shows λ = 3, while the blue line shows λ = 6.

This could be due to the hydrodynamic interactions between the bodies, or the effect of the solid

walls.

In the absence of solid walls and hydrodynamic interactions between bodies, a suspension will

align and disalign. The period of the order parameter in this case is the same as the rotational

period for a single fiber. In Figure 5.8 the theoretical order parameter is shown for a suspension of

non-hydrodynamically interacting fibers in an unbounded shear flow. Hydrodynamic interactions

prevent the suspension from disaligning completely.

Another quantity of interest in rheology is the effective viscosity of a suspension. The shear

viscosity µ relates the bulk shear stress σxy of a Newtonian fluid to the bulk shear rate γ̇,

σxy = µγ̇.

Adding bodies increases the bulk shear stress of a suspension. The proportionality constant relating

the increased σxy to the shear rate is the apparent viscosity, and the ratio between the apparent

viscosity and the bulk viscosity is the effective viscosity µeff. Experimentally, the bulk shear stress
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Table 5.2: The time averaged order parameter during the second revolution of the Couette
apparatus. The higher aspect ratio fibers align better on average. The alignment is in all
cases higher than predicted for a single Jeffery orbit.

area fraction, φ aspect ratio, λ computed 〈S〉 theoretical 〈S〉 (single fiber)
5% 3 0.52 0.50
10% 3 0.60 0.50
15% 3 0.65 0.50
5% 6 0.91 0.71
10% 6 0.89 0.71

is often computed by measuring the torque on the inner cylinder [40]. Numerically, this is simply

the strength of the rotlet corresponding to the inner cylinder. By computing the ratio of the torque

on the inner cylinder with bodies to the torque without bodies we determine the effective viscosity

of a suspension. Figure 5.9 shows the effective viscosity increases with φ, but is generally lower for

bodies with aspect ratio λ = 6. This is because higher aspect ratio bodies align themselves better,

and thus contribute less to the bulk shear stress. The spikes in 5.9 occur when a repulsion force is

added to the system. Similar spikes were observed in Lu et al. [51]. To smooth the results we use

a multiscale local polynomial transform to smooth the data shown in Figure 5.9.

Finally, instead of computing the instantaneous effective viscosity, experimenters are interested

in the time averaged effective viscosity of a suspension. In Table 5.3, we report the average instan-

taneous effective viscosity over the second revolution of the outer cylinder

Table 5.3: Time averaged effective viscosity for various area fractions and aspect ratios.
The time average is done between the first and second revolutions of the outer cylinder.
As φ increases the effective viscosity increases as expected. In general higher aspect ratio
bodies increase the viscosity less than lower aspect bodies.

λ 5% area fraction 10% area fraction 15% area fraction
1 1.12 1.22 1.42
3 1.10 1.23 1.36
6 1.08 1.18
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Figure 5.9: Instantaneous bulk effective viscosity for various volume fractions and body
aspect ratios. The inner cylinder is fixed, while the outer one rotates at a constant
angular velocity. The transparent lines represent the raw data, while the solid lines have
been smoothed using a multiscale local polynomial transform.
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CHAPTER 6

CONCLUSION

We have developed numerical methods to simulate the motion of two-dimensional rigid particles

in a Stokesian fluid. The method makes no assumptions on the particle shape, nor on the particle

concentration. Moreover, it works in bounded and unbounded flows. One challenge when simulating

suspensions is that numerical errors can cause bodies to overlap. To avoid overlap we introduce a

modification of the repulsion force in [51]. This repulsion force ensures separation between particles,

and is completely free of any tuning parameters. In the original contact algorithm, all inter-body

hydrodynamic interactions are discretized explicitly by lagging them from the previous time step.

This results in a block-diagonal system to solve at each time step. Unfortunately, discretizing

the inter-body interactions explicitly necessitates a small time size, particularly for concentrated

suspensions. The approach taken by Lu et al. [51] was to maintain a sufficiently large minimum

separation distance to control the stiffness. Instead, we have taken the approach of using a globally-

implicit time stepper to simulate concentrated two-dimensional suspensions without requiring a

large minimum separation distance nor an excessively small time step size. The disadvantage of

the new globally-implicit time stepper is that a full dense linear system must be solved at every

time step since all the bodies are coupled. In certain simulations, the additional cost of performing

this dense matrix solve every time step is more than offset by the ability to take larger time steps.

We use our stable algorithm to investigate the rheological properties of various suspensions and

study the effect of the contact force on the time reversibility of the simulation. We investigate

the effect of the concentration and aspect ratio of rigid fibers on the alignment angle and effective

viscosity of a suspension confined inside a Couette apparatus.

6.1 Limitations

Physically, in order to use a boundary integral representation, the method requires that the

steady Stokes equations are valid. Therefore, it is assumed that both the Reynolds number and

the Strouhal number are very small. This means that the length scale is small, the velocity is slow,
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the viscosity of the solvent is large, and the time scale is large. In addition to these assumptions,

it is also necessary that the solvent is Newtonian. If any of these assumptions are not valid, then

boundary integral equations become much more difficult or impossible to implement. It is possible

to still use an integral equation formulation, however the formulation often includes computationally

expensive volume integrals.

Another limitation is that the suspended bodies are assumed to be completely rigid. The

formulation for non-rigid bodies is slightly different, and BIEs have been used to simulate different

particle suspensions, including vesicles [63,64,68], drops [73], and flexible fibers [77]. The repulsion

force described in Chapter 4 does not require the bodies to be rigid, and in the fact the original

paper by Lu et al. [51] demonstrated the robustness of the method for vesicles suspensions.

6.2 Future Work

There are many avenues for future work. Mathematically, since the linear complementarity

problems that need to be solved are not positive definite, there is no guarantee that solutions

exist or are unique. This may lead to a non-convergent sequence of solutions to the nonlinear

complementarity problem, and is believed to cause problems in simulations involving solid walls.

We attempt to circumvent this issue by reducing the time step size if the number of NCP iterations

is too large. However, this is a heuristic and contradicts our goal to avoid heuristics and tuning

parameters. The robustness of the contact algorithm can be improved by using a different measure

for contact. In [81], instead of the STIV, the signed distance between bodies is used to measure

overlap. This method results in a sequence of symmetric, positive definite LCPs, where solutions

are guaranteed to exist and be unique. This choice of metric, however, only detects contact at

the end of each time step. Unlike STIVs, if contact occurs at an intermediate time (i.e. one body

passes completely through another) this contact will not be detected.

6.2.1 Three-dimensional Simulations

The method as it stands has only been implemented for two dimensional (planar) flows. For

a fixed number of unknowns, two-dimensional simulations allow us to simulate far more rigid

bodies. That said, three-dimensional simulations are more realistic and would allow us to properly

investigate certain physical features that only show up in three dimensions. The Stokes paradox,
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that in two-dimensions prevents us from simulating particles undergoing a net force in an unbounded

domain, does not exist in three dimensions where the fundamental solution decays as r−1. This

would allow us to simulate other important problems such as sedimentation, without introducing

a bounding wall.

Three-dimensional computations involving boundary integrals to simulate rigid body suspen-

sions are well- developed [17, 55]. After replacing the two-dimensional kernels with their three-

dimensional counterparts, the formulation described in Chapter 2 is identical. The three-dimensional

double-layer kernel is singular, so different quadrature techniques must be used to evaluate the

intra-body interactions [12]. The space-time interference volume required to compute the repulsion

force as discussed in Chapter 4 was originally developed in three dimensions [30]. In addition, the

near singular integration technique described in Section 3.3 has been implemented in three dimen-

sions [84] and other methods to compute the interactions between nearly touching bodies in three

dimensions exist [3, 72].

6.2.2 Periodic Boundary Conditions

Although we have used our method to compute the viscosity of a suspension inside a Couette

apparatus, in reality wall effects play a large role in the viscosity of a confined suspension. One

remedy is to enlarge the size of the computational domain and compute the viscosity based on

a representative region far from the walls. However, the discretization of the solid walls and the

extra particles not in the representative region increases the size of the resulting linear system. To

more accurately and efficiently compute quantities like the effective viscosity, periodic boundary

conditions should be used. Single and double periodic boundary conditions been implemented in a

boundary integral setting [2,67]. Periodic fast summation methods like the Ewald summation [21]

and the periodic FMM [67,82] are used to accelerate the linear solve.

For unbounded shear flow however, the background flow is periodic in the shear direction but

grows in the direction normal to the shear plane. The Lees-Edward boundary conditions [46] have

been used in molecular dynamics simulations to model a sheared system without introducing any

solid walls. These boundary conditions are illustrated in Figure 6.1.

As with regular periodic simulations, a master cell of dimensions H ×H is replicated vertically

and horizontally. The cells above and below the master cell translate with constant velocity V = γ̇ȳ,

where γ̇ is the shear rate and ȳ is the y component of the center of the cell. In the x direction
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the periodicity is enforced as usual. That is, if the body leaves the master cell from one side it

reappears on the other (green body in Figure 6.1). In the vertical direction however, we need to

take into account the relative movement of the cells.

−V

V

t = t0

−V

V

t = t0 + ∆t

Figure 6.1: Sketch of the Lees-Edwards boundary condition for unbounded shear flow. A
master cell is replicated vertically and horizontally. The cells above and below the master
cell translate relative to it with velocity V = γ̇ȳ, where γ̇ is the shear rate and ȳ is the y
component of the center of the cell.

Consider the blue body in Figure 6.1 and Figure 6.2. By time t+∆t, the cell directly above the

master cell at t = t0 has shifted by V∆t units. Therefore instead of the blue body exiting from the

bottom and reentering at the top with the same x component, it must reenter from its horizontal

position in the shifted cell. In addition, the velocity of the blue body changes to match the cell it

is entering from. Instead of moving at velocity (u, v) it will now be moving with velocity (u+V, v).

Thus the Lee-Edwards boundary conditions for a body attempting to move to (x, y) with velocity

(u, v) can be summarized as follows:

• Body exits from the left edge of master cell:

(x, y)→ (x−H, y), (u, v)→ (u, v).

• Body exits from right edge of master cell:

(x, y)→ (x+H, y) (u, v)→ (u, v).

• Body exits from bottom of master cell:

(x, y)→ (x+ V∆t, y +H), (u, v)→ (u+ V, v).
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(A)

(B) (C)

Figure 6.2: Sketch of just the blue body in Figure 6.1. The blue body exits the master cell
from the bottom (A). Because the cell on top has shifted by V∆t, instead of reentering
from the top (B) as in normal periodic boundary conditions, the body reenters from its
horizontal location in the shifted cell (C).

• Body exits from top of master cell:

(x, y)→ (x− V∆t, y −H), (u, v)→ (u− V, v).

These boundary conditions have been used to simulate rigid body suspensions using the finite

element method [33], the lattice Boltzmann method [50], and Stokesian dynamics [70], however

they not been investigated using BIEs. To implement a repulsion force using the methods described

in Chapter 4 would require a periodized computation of the STIV, something that is not yet

implemented.
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APPENDIX A

INDEX NOTATION

Index notation is a tool to facilitate concise manipulation of tensor operations. Details on the

definitions and properties of tensors can be found in many engineering and physics textbooks. A

vector in Rd is first-order tensor and can be represented in index notation as

a = ai,

where i ranges from 1 to d. In this dissertation, we will always take d = 2. A second-order tensor

can be represented as

A = Aij ,

where now both i and j range from 1 to d. Higher order tensors can be defined in a similar manner.

A.1 Einstein Summation Convention

When manipulating tensor expressions, it is often necessary to perform summation operations

across indices. For example the dot product between two vectors in is defined as

a · b = a1b1 + a2b2 =
2∑
i=1

aibi.

Einstein simplified this notation by adopting the convention that any repeated index in an expres-

sion always implies a summation. The dot product can then be written more concisely as

a · b = aibi.

This notation can also be used to define matrix-vector products and the divergence operator

Ax = b⇔ Aijxi = bj , ∇ · a = ∂

xi
ai = ∂iai.

Often we will use the shorthand ∂i to represent ∂/∂xi. The gradient can be defined then as

∇a = ∂jai.
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A.2 Special Tensors

There are a couple of special tensors that come up often in index notation. The first is the

Kronecker-delta tensor, a second-order tensor defined as

δij =
{

0 i 6= j,

1 i = j.

This tensor is equivalent to the identity matrix in linear algebra.

The Levi-Civita tensor is third-order tensor defined by

εijk =


1 if (i, j, k) is (1, 2, 3), (2, 3, 1), (3, 1, 2).
−1 if (i, j, k) is (3, 2, 1), (1, 3, 2), (2, 1, 3).
0 otherwise.

The Levi-Civita tensor appears in the cross product and curl:

a × b = εijkajbk, ∇× a = εijk∂jak.
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